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Abstract 
The statistical analysis of dynamic stability failures of ships is made extremely 

difficutl due to the problem of rarity. Few or no events of interest may be observed in the 
amount of time that is feasible for model testing or even simulation. The Envelope Peaks 
Over the Threshold (EPOT) method is a statistical extrapolation technique that was 
developed to address this problem. It uses the principle of separation to decompose the 
problem into rare and non-rare sub-problems. The non-rare problem is solved trivially 
with direct statistics, while the rare problem is solved by fitting a distribution to the peaks 
or maxima over a threshold. The notion of statistical condfidence it carried through the 
whole process. The algorithm and principles behind the algorithm are defined and 
explored in detail. 
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Introduction 
Ships of novel hull form shapes may be vulnerable to dynamic stability failures as 

currently existing stability standards, which are based on previous experience, do not include 
these unconventional shapes. Some of the failures related to dynamic stability arc caused by 
irregular waves and gusty wind. The inherent randomness of these environmental factors 
makes the probability of stability failure a very useful measure for both design and operation. 
This work's particular focus is partial stability failure related to large roll angle events caused 
mostly by pure loss of stability on the wave crest. 

Difficulties evaluating the probability of large roll angles are related to both the rarity 
of the event and the nonlinearity of the dynamical system describing the motion of a ship in 
moderate to severe seas. The nonlinearity of the dynamical system comes mostly from 
nonlinear stiffness that also could be a random quantity due to changing stability in waves; 
however other terms (including yaw moment and roll damping) also make their contribution. 
As these nonlinearities are essential to the problem, options for realistic assessment may be 
limited to numerical simulations using advanced potential codes and model tests. 

The rarity of the large roll event defines another set of requirements for the solution 
of this problem. Conditions arc possible when the large roll event is not observed during the 
available run-time of the simulation or model test. Other conditions may lead to very few 
observed large roll events so that use of direct statistical counting cannot be considered as a 
practical option. Therefore, the solution must be an extrapolation. 

Probabilistic or statistical extrapolation is widely used in technology; prediction of 
extreme events utilizes extreme value theory. This type of methodology is based on the 
extreme value distribution being fit to statistical data; then the distribution can be used to 
predict an extreme value that can occur with a given probability or mean time thai passes 
before such an extreme value is observed. Mathematical background of these methods comes 
from theorems of the extreme value theory stating that a maximum of a random variable has 
a limiting distribution that docs not depend on type of distribution of this variable. 

The problem, with straight-forward application of this method, is related with the 
significant nonlinearity of the dynamical system. A sample of roll motions resulted both from 
experiment or numerical simulation is statistically dominated by relatively small roll angles. 
As the stiffness of the dynamical system is significantly nonlinear, properties of the system 
change significantly with the roll angle. Therefore, extreme-value distribution fitted with all 
the data may not be representative of the properties of the system at large roll angles. This 
problem is generally known in the extreme value statistics; its standard solution is a "peak- 
over-threshold" (POT) method. The idea is to use data which exceeds a certain threshold. 

Interpretation and adaptation of the POT method for probabilistic evaluation of 
dynamic stability is the main core of this work. The most principle aspects are as follows: 

• Relation with time of exposure; probabilistic measure of dynamic stability should 
have explicit relation with time. The most natural way is to present it in a form of the 
rate of failures (average number of failures per unit of time; it equals to inverse value 
of a mean time before/between failures). This allows using Poisson flow to express 



• 

probability of failure during given time of exposure (assuming stability failures being 
independent random events). 

Statistical uncertainty; considered probabilistic measure of dynamic stability is 
calculated based on a finite-size dataset. That makes the measure a random value and 
it has to be treated accordingly. Confidence interval is a standard way to handle 
statistical uncertainty of a value derived from a finite-size sample. Statistical 
uncertainty is also a major factor choosing a numerical value for the threshold. 

Check of consistency and convergence; correct interpretation of the POT method 
needs to be checked by comparison with other methods, such as upcrossing theory. 
Convergence also can be tested by comparison with the results of direct counting 
using a sample of larger size. 

Practical application of the method is meant for partial stability failures. This event 
occurs when a ship encounters large roll (or pitch) angle that may be dangerous for crew or 
equipment on board. That means that a roll angle may be dangerous on cither side, port or 
starboard, so exceedancc on both sides constitute stability failure. As roll (and pitch) motions 
have certain inertia, a large amplitude on one side is likely to be followed by a large 
amplitude on the other side. This make events statistically dependent and may create a 
problem with the application of Poisson distribution and therefore with an explicit 
relationship with time. To avoid this complication, an envelope may be considered instead of 
the original process. So the envelope peaks-over-thc-threshold is actually used for 
extrapolation. 

In summary, this work is focused on the application of the Envelope Peak-Over- 
Threshold (EPOT) method for the probabilistic evaluation of dynamic stability using a 
dataset originated from numerical simulation or model experiment. The method can be tuned 
to handle the nonlinearity of the dynamical system. The method provides an explicit relation 
with time of exposure and comes with a confidence interval as a measure of statistical 
uncertainty. Finally, the method is meant to be tested for consistency against other theoretical 
methods and for convergence against the result of direct counting on a larger-size sample. 

The original idea to use peak-over threshold as a method to treat the problem of rarity in 
a nonlinear dynamical system belongs to author B. Campbell. He also proposed to use an 
envelope as a means to evaluate the rate of exceedances of both sides while keeping 
applicability of Poisson flow. Author V. Bclenky provided theoretical justification and initial 
numerical testing of the method. Numerical implementation of the method is a result of joint 
efforts of the authors. Section 1 through 5 are written by V. Belenky; Section 6 is written by 
B. Campbell. 



1. Theoretical Background 
1.1.Relation with Time 

Here we review the available formulations for relating the probability of the 
occurrence of a large roll event with a time of exposure. 

/. /. /.   Introduction of Time - Binomial Distribution 

A fundamental building block of the probability of event occurrence is the 
connection between time duration and the number of events likely to be seen. Consider n 
instants of time of short duration At. Assume that an event (i.e. a large roll angle) may 
happen at an instant of time /, with probability/;,. Also assume that if there is more than 
one large roll event, they can be considered as independent random events. This 
assumption can be justified by the expected rarity of large roll events and, therefore, the 
sufficient time is expected to pass between two subsequent events to eliminate any 
dependence. 

Consider the probability that an event occurs exactly at r'-th time step. This 
implies that the event does not happen in all other instants of time. 

P{t = ti) = q0qx..qi_ipiq,^...qn_]q„;        q,=\-p, (1.1) 

It is clear from the formula (1.1) that probability /' depends on how many time 
instants are included, therefore this formula already expresses the relationship between 
probability and time. 

If the conditions during the exposure time under assessment can be considered 
unchanged (that is, the process is stationary), then there is no difference between any two 
instants of time; therefore probability p, must be the same for all instants of time. This 
allows re-writing formula (1.1): 

P(t = ti)=pq"A ; q = \-p (1.2) 

Note that the probability in the formula (1.2) does not depend at which instant of 
time the event has occurred, but it still must be a particular instant of time /,. 

Consider the probability that the event occurs once at any instant of time. This 
means that it can occur in the 1st instant or in the 2" instant and further on. There are 
exactly n possible scenarios how the event can occur once during n time steps. 

P(m = \) = npq" ' (1.3) 

Where   m   is   the   number   of  events   that   occur   in   the   length   of  the   record. 
Consider the probability of two events happening exactly at the instants i and/'. 

Following the logic of formula (1.2): 

/>(,„ = 2 |/ = /,,/ = /;) = /rV'-2 (1.4) 

To express the probability that two events occur at any two moments of time, it is 



necessary to find all possible combinations of how two elements can be chosen from n. 
The formula for such a value is known from combinatorics: 

n^2)=-^- (i.5) 
2(«-2): 

The probability of the event occurring at any two instants of time can be 
expressed as: 

P(m = 2) = C(n,2)p2qn2 (1.6) 

Generalizing formula (1.6) for the case when the event occurs k times at any instant: 

P(k) = C(,i,k)pkq"k (1.7) 

Here C(n, k) defines a number of combinations of how k values can be chosen out of n. 
The general formula is also available from combinatorics: 

A'!(/7-A:)! 

Finally, the probability that exactly k events occur during the time of exposure 
represented by n time steps is: 

k\{n-k)\ 

Formula (1.9) is known in probability theory as the binomial distribution. 

/. 1.2.   Probability of Event - Upcrossing Theory 

We now consider the transition from discrete time steps to continuous time and let 
At approach zero. We want to find the probability of an event occurring at time instant /. 
We can approach this by considering the underlying process, such as the rolling of a ship. 
A large roll event is defined as the exceedance of some level a by roll angle <J>. Consider 
the process of roll angle as differentiable process with known joint distribution of roll 
angle and roll rate, /'(()),<j>). 

Exceeding the level a at time instant / can be expressed in the form of the 
following system of inequalities: 

{¥?)«* 
l4fr+*)>« (U0) 

As the process of roll angle is differentiable: 

(<f>C) < a 
1 • (111) 
\<b(t) + §dt > a 

Obviously, the system of inequalities (1.11) can only be satisfied if the roll rate is 



positive. Therefore adding the condition of positive roll rate does not change the system 
of inequalities (1.11): 

<|K/)>tf + <M/ (1.12) 
<j>>0 

The probability of the event occurring at the instant / is expressed as the probability of 
satisfying the system of inequalities (1.12) and the probability can be written as the 
integral of the joint distribution of roll and roll rate: 

P=   \ J/(<|>,<j>W<M|> (1.13) 

The limits of the first integral are infinitely close to each other. The mean value theorem 
allows re-writing the equation (1.13) as follows: 

/> = e//J/(tf,<j>)<MJ> (1  14) 
o 

Formula (1.14) shows that the probability of the large roll event occurring at time instant 
/ becomes infinitely small if the time is considered continuous; 

lim/7 = lim/7 = dp (I |5) 
V -»() n   > a 

Therefore, the nomenclature dp is more appropriate for the formulae (1.13) and (114) in 
this case: 

dp = dt [f\a,§)W$ (1.16) 
n 

Then  integral  in  formula (1.16) has a meaning of derivative of the  instantaneous 
probability of the event with respect to time: 

^- = f/(a,<j>)cM> = M') (1.17) 
dt     I 

Here A, is the rate of events. In general, it is function of time. 

Xvx\p = X\mp = dp = 'k{t')dt (1 18) 
,V-»0 n-*x 

If the process of roll is stationary, the rate of events becomes constant and formula (1.17) 
can be simplified, as the first derivative a of stationary process is independent of the 
process itself. 



/(M) = ./W(<|>) 
and formula (1.17) becomes: 

dp \=^=f{a)\mm 
dt 

(1.19) 

(1.20) 

/. 1.3.   Continuous Time - The Poisson Distribution 

Continuing the transition to continuous time, we set At infinitely small, which 
means «=oo and look for the probability that there would be exactly k events during time 
T: 

PT(k) = \\m(P(k)) = \\m(c(n,k)p'(\ - p)'"k) (1.21) 

Taking into account formula (1.20), the probability of the event occurring at time 
/ can also be expressed in terms of discretized time: 

p = XAt = 
XT 

(1.22) 

Substituting formula (1.8) into (1.21) and expanding some of factorials, we obtain: 

PT(k) = Mm 
r]-2-...(n-k)-(n-k + \)..(n-\)-n 

PO-PY 
k\{\-2-...(n-k)) 

After dividing the numerator and denominator by (1-2 •...(« - k)): 

PT(k) = \\m 
k\ Pk0-P) 

n-k 

Substitution of formula (1.22) into (1.24) yields 

(n-k + \)..(n-l)-n 
PT(k) = l\m 

arVr. AT
V 

V ft V n ) \       n ) 

lim 
(n-k + \)..(n-\)-n  f.^T^ 

n \       n J 

{XT) 
k\ 

k \ XT^ 

n ) 

»\ 

(1.23) 

(1.24) 

(1.25) 



Now consider the limits of each factor: 

\(n-k + l)..(»-l)-/0 
lim 

Mm 
n—* r 

'l-—1 
11  i 

n 

= 1 

(<-\ TV ^ 
lim 

{XTf       (XT)k 

k\ j k\ 

Mm 'l_ —' 
n ) 

exp(-AT) 

(I 26) 

(I 27) 

(1 28) 

(I 29) 

Taking into account equations (1.26)- (1.29), formula (1.25) can be presented as: 

{XTf 
P,(k) 

A< 
ex p(-AT) (1 30) 

Equation (1.30) is known as the Poisson distribution. It expresses probability of exactly k 
events occurring during the exposure time T for a continuous process. 

1.1.4.   Time Before/Between Events 

Consider the cumulative distribution function (CDF) of time before the first event 
or between consecutive events. As an event may occur at any instant of time, the interval 
between them is a random variable. This interval also can be defined as a time while no 
events occurs. 

Consider CDF of the time while no event occurs. By the definition, this is the 
probability that a random variable is less than or equal to an argument. 

F, (x) = P(T < x) (1.31) 

The CDF also can be expressed through the probability of a complimentary event: 

FT{x) = \-P(T>x) (132) 

If no event occurs then the time between them is obviously larger than the 
argument. Therefore, this is a probability that no event occurs during time T. It can be 
found from formula (1.30) by setting k to 0: 

P(jr> 7")- PT(k =0) = exp(-)ir) 

Formula (1.32) can then be expressed as: 

F,(T) = \-cxp(-AT)    •    T>0 

(1 33) 

(1 34) 

This CDF is known in probability theory as the exponential distribution. The 
probability density function (PDF) of the exponential distribution can be found by 



differentiating the CDF, equation (1.34) with respect to its argument: 

f, (T) = ^^ =-A cxp(-AT)   ;    T>0 (1.35) 

The exponential distribution has a single parameter A, the rate of events. The 
inverse of A. is the mean value and standard deviation of the time without an event. 

x 

m(T)=\Tfl(T)dt = y;i (1.36) 
0 

x 

V{T)=\(T-m{T))2fr(T)dt = y2    ;   cr(T) = )/A (1.37) 
(i 

Here m(T), V(T) and a(T) are the mean value, variance, and standard deviation of time 
between / before the event, respectively. 

It is possible to demonstrate that formula (1.34) also can be interpreted as the 
probability of at least one event (one event, two events or more) occurring in time 
duration T. Expressing this probability through the probability of complimentary event 
yields expression identical to (1.34) 

Pr(**0) = l-Pr(* = 0) = l-exp(-X7*) (1.38) 

1.2.Statistical Evaluation of Upcrossing Rate 

We now shift our focus to the statistical estimation of the rate of upcrossing 
events (upcrossing rate), including an appropriate confidence interval. We also wish to 
relate the upcrossing rate to statistics of other related parameters, including the time 
between events and the time before the first event. 

1.2.I.   Statistical Estimate of the Parameter of the Distribution 

Consider a sample of a stochastic process .r, presented in the form of an ensemble 
of NR records. Each record is represented by a time history of NPT points with the time 
step At and n= Npj~l time steps. Then the event of upcrossing of the level a can be 
associated with a random variable U defined for each time step as follows: 

[1    i(<flnx,,/>fl 
Uu = \n    "        . > = \,,n:   J = K..,NR (1.39) 

0   Otherwise 



The number ot'upcrossing events occurring at the f time step of each record is calculated 
as: 

^,,=2X d-40) 
/•I 

The estimate of the probability that the upcrossing event occurs at time instant /, is: 

tt=Tp2X, (141) 

This value is a statistical estimate of infinitely small probability, dp, as introduced in 
formula (1.15): 

dp(t = /,) = Jimp,' 

Then, following the formula (1.22) the estimate of X' - the parameter of the Poisson 

distribution estimated at the /lh time step, is expressed as: 

K=— c4-^) At 

If process .v is stationary, the parameter of the Poisson distribution, X, does not depend on 
time and the value X*  estimated for different time steps tends to the same limit with 

increasing number of records. If the process .v can also be considered ergodic (thai is. the 
statistical characteristics of x can be estimated from one record if it is long enough), then 
the estimates of p' and X* ean be evaluated using all the time steps: 

ntf        nNKt\j3 
(144) 

/   \ i       » "* 
x:=mfc =——fyun v        nNRAtt!jl    ' 

Regrouping formula (1.43), we see that it contains the number of events in each record. 

*«=2X, (145) 

The value Nc is a random number represented by its sample. The volume of this sample 
the number of records NR. The mean value of this random number is estimated as: 

1    vs 

^ it /-i 

Substitution of formulae (1.45) and (1.46) into equation (1.44) yields: 

I 1 



r=^)=-^=^ 
nAt 

Where: TR is time duration of a record. 

(1.47) 

Formula (1.46) also allows an interpretation of the meaning of the X parameter of the 
exponential distribution; that is the average number of crossings per unit of time also 
known as the "rate of events". 

/. 2.2.   Confidence Interval for Rate of Events 

Formula (1.47) also reveals the statistical meaning of the rate of events. It is a 
value proportional to the average estimate of the number of events in each record. 
Therefore, in order to calculate the confidence interval for the rate of events, it is enough 
to find the confidence interval for m'v • 

The value m{ is an estimate of the mean of the random variable Nu- This variable 

has the binomial distribution, as it represents the number of upcrossings occurring within 
a finite number of time steps. As the number of events is countable, this random variable 
is discrete and it is defined by the following probability mass function (discrete 
counterpart of PDF) 

/(*) = 
n\ 

k\{n-k)\ 
pk{\-p)"k (1.48) 

Where k is a number of crossings observed during the time duration of a record. In this 
case, NUJ represents a realized sample of £. The theoretical mean value mxj and variance 
Vu of the binomial distribution (1.48) are known: 

mi; = np\        Vv =np{\- p) (1.49) 

The estimate of the mean value (1.46) is a random number as it is a sum of NR random 
variables, each of which has the binominal distribution with the same parameter. The 
distribution of the mean value estimate is important to the method of evaluating the 
confidence interval. 

Independent of is distribution, the variance of m[  can be found as a variance of a 

sum of independent variables: 

j     N. \ , (N. \ 

rfa)-v £-%** 
V'   «  N N. 2> 

V H 
Uj 

(N. 

N, I^J 
V. H 

MIL 
Nl 

(1.50) 

N, 

As the exact value of the variance Vu is not known, we substitute an estimate for it: 
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V(•l)-K np 

N«      NR 

(1-.*) (1.51) 

As equation (1.46) represents the sum of identically distributed random variables, the 
distribution of the value m[ tends to normal, as sample size NR increases (Central Limit 

Theorem).   Belenky, et al (2007) used this approach to evaluate the confidence interval 
and found that the distribustion of the estimate is expressed as: 

f(m) = 
V2*f/('»;) 

exp 
[m- m{m[ ))" 

(I 52) 

It is known that the mean value estimate is unbiased; therefore, the mean value of the 
estimate is equal to itself: 

m\m"( ) = m[ (I 53) 

The upper and lower boundaries of the confidence interval UB and LB must satisfy the 
following equation: 

UB m 

p = [f\m)dm = F(UB) - F(LB)   ;    F(m) = \j\z)dz (I 54) 
I IS 

where P is the accepted confidence level (typically 90% or 95%) and F(m) is the CDF. 
To find the boundaries, the inverse function of the CDF, Q(P), (also known as the 
Quantile function) is introduced: 

m = Q(P) = Inv{F(m)};    P = F(m) (1.55) 

Where P is a probability.   The inverse function returns the value corresponding to thai 
probability. Then: 

l-(^ LB = Q 
l-P 

;    UB = Q = Q\ 
+p (1.56) 

Recognizing that the normal distribution is symmetric around its mean value, the half- 
breadth of the confidence interval can be expressed as: 

LB(m'( ) = m'v - e ;    UB(m] ) = m[ + z ;    £ = Q 
1 + PN 

2   , 
(157) 

Here e is the half^breadth of the confidence interval. Typical values are: 

e - Kp a 

P = 0.95 ;        K„ = 1.959964 

P = 0.9973;     K? =3.0 

Here a is the standard deviation of the variable; the latter pair of values is also commonly 
referred as the "six-sigma rule". 
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Following (Belenky, et ah 2007), boundaries of the confidence interval for the 
rate of events X* are defined as: 

_LB{m[.)  .     ,   _ UB(mL.) 
Khm•-—~  ,    t-up ~—~  (1-58) 

Use of the normal distribution (1.52) is only justified if NR is large as it is based on the 
Central Limit Theorem. The question of how large NR should be to employ the normal 
distribution may require additional study. 

At the same time, the sum of independent variables with a binomial distribution, 
all with the same parameter p, also have a binomial distribution with the same parameter 
p, but with a sum of the number of cases. If the number of cases are the same then the 
new number of cases becomes In. In the case of NR records, the total number of cases 
becomes: 

N = NR-n (1.59) 

Then, the probability that NR records, each with n time steps, will contain k upcrossings 
can be expressed as: 

P(k) = — pk (1 - p)s~k (| 60) 
k\(N-k)\ [       ' 

The formula (1.60) also can be interpreted as the probability mass distribution for the 
number of upcrossings for all the records: 

/(*) = — pk(\-p)y~k (161) 

The mean value for this distribution is: 

mm = Np (1.62) 

Taking into account (1.44), the estimate for this mean value is equal to the number of 
crossings that were actually observed: 

The variance of the number of crossings according to distribution (1.60) can be expressed 
as follows: 

Vm=Np(l-p) (1.64) 

The estimate of this variance is related to the y' estimate of the variance of the number 

of crossings during one record, as defined in (1.49) and v{m[\ the estimate of the 

variance of the mean number of crossings per record from equation (1.51): 
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Vm = Np\\- p ) = NRnp\\-p)= NX- = N2
R v(m[ ) (1.65) 

The boundaries of confidence interval for the observed number of crossings for all the 
records are still define by formula (1.56), interpreting Q as the inverse function of 
binomial CDF of the number of crossing for all the records. As the binomial distribution 
has non-zero skewness, symmetrical presentation (1.57) is not applicable: 

LB(NU  ) = Q l-Pl UB(NU  ) = Q 
2 

(1 66) 

The boundaries of the confidence interval for the rate of events   A.' • without the 

assumption of normality, are defined as: 

C = LB(NU')     LB(NU') 

NRnAt NJR 
K = 

UB(NU')     UB(NU') 

NRnAt N*T* 
(1 67) 

Here  X)     and  X,*    are the lower and upper boundaries of the confidence interval, 

respectfully. 

1.2.3.   Numerical Example 

Consider the process of simulated wave elevations (from a linear model) 
characterized by a Bretshneider spectrum calculated for significant wave height A/.v=l 1.5 
m and modal period of T„, =16.4 s. Then the mean period is: 

r, =0.7737; (1.68) 

The following formulation of spectral density was used (see also Figure 1.1): 

s(a>) = Ao>~5exp(-BaT*);   A = 173//^ A ;   # = 6917, 4 (1.69) 

4(lx 

(t>. S 

Figure I.I Bretschneider Spectral Density Significant Wave Height 7/^=11.5 m and Modal Period Tm 

= 16.4 s 
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The wave-elevation time history for a fixed point of space was computed using an 
inverse Fourier transform as follows: 

1=1 

Here oo, is a set of frequencies used for discretization of the spectral density (1.68), rw, is 
amplitude of the i   component and q>, is a phase shift for the i   component. 

The frequency set for this sample consists of uniformly spaced frequencies. The 
number of frequencies has been chosen to avoid the self-repeating effect described in 
(Belenky, el at., 2007). The total number of frequencies was 180, with 42 components 
before the peak of the spectral density curve and 138 after the peak. The width of 
frequency band was expressed through the frequency of the peak of the spectral density 
curve. 

271 
Bnd((o) = 1.15(0iimax =0.445 ' ;    (*>„,„,„ =— (1.71) 

m 

Then the frequency step is calculated as follows: 

Aco = -^^ = 0.0032 (172) 

The   lower   and   upper   limits   frequencies   are   © =0.25s-1   and   cov  =0.824s \ 

respectively. As the frequency spacing is uniform, the duration of a single record should 
not exceed: 

r,„.=|2L = 1^68 s = 32.8 min (1.73) 
Aw 

Taking into account (1.73), the time duration for a single record was set to 7^=30 min. 
To ensure that this spectral discretization does not lead to the self-repeating effect, the 
autocorrelation function needs to be checked: 

R(x)= J5((o)cos(OT£/co;   Rt = ^S,cos(coAt-(i-\))   y = 1,2.JV, (1.74) 
n w 

Here the time step A/ = 0.5 s; Si is the value of the power spectrum at frequency w, and N, 
is the number of time steps. 

S, =       [s((£>)d(.o = 0.5A(o(.v(co, - 0.5Aco) + s((0, + 0.5Aco)) (l .75) 
(o,   0.5 A(o, 

The autocorrelation function is shown in Figure 1.2. It can be seen from this figure there 
is no self-repeating effect. 

The variance of wave elevations calculated from the discretized spectrum should 
also be checked. As the frequency band is limited, some energy at high frequencies was 
not included in the discretized model. 



^=£5,= 7.8 m2;    cy,., = fa = 2.79 m;    HSd=4att=UM in (176) 

Here V y is the variance of wave elevations as discretized, a y is the standard deviation 
and HSJ is the significant wave height as discretized. Because of the frequency truncation 
limits, the significant wave height as discretized is slightly less than the input value o\' 
11.5 m. The difference, however, is less than 3% and can be considered acceptable. 

0 200 400 600 800 1000 1200 1400 1600        1800 

Figure 1.2 Autocorrelation Function of Wave Elevations Calculated from Discretized Spectrum 

The amplitudes of the wave components in (1.70) are calculated from discretized 
power spectrum as: 

rm = V^ (177) 

Finally the phase shift tp,- is assumed to be a random variable uniformly distributed 
from 0 to 27i. Each set of Mo-180 phase angles corresponds to one record of 30 minutes. 
The dataset used in this example includes 200 such records. 

As shown in Figure 1.3 for the level of a=7.5 m, three crossings were found in the 
first record 

*«,=£"..• =3 (1.78) 

A total of 721 up-crossing events were observed for all the records: 

^r=Z2X/=721 
,=]   y=l 

The total number of cases of the auxiliary variable U is: 

N-Ng-n- 200-3599 = 719800 

(1.79) 

(1.80) 
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o ZOO 40 600 800 1000 1200 1400 1600 

Figure 1.3. Record I of the Process of Wave Elevations; With Three Upcrossings Through a Level of 
7.5 m 

Using formula (1.45) the parameter of the Binomial Distribution, p, and the upcrossing 
rate, X, are estimated as: 

.     1<A   .        1 

n rr        nN 

n     .vs 

•XZ^., =0.001002 

A = m[X]) = 
1 

nNRAttt* 
ZZ6^ = 0.002003.v 

(1.81) 

(1-82) 
=i 

The theoretical value for the rate of events can be found by substitution of the Normal 
Distribution (Equation 1.55) into Formula (1.19) 

X = /(a)J/(<j))<j>4=   -^exp 
;</ 2V. 

= 0.002055 s (1.83) 
& J 

Formula (1.83) includes the variance of the temporal derivative of wave elevations as 
discretized: 

v- =Z5-(°;= 1-77 "j2-s': (1.84) 

The theoretical value and estimate for upcrossing rate seem to be quite close, but 
it cannot really be judged. The estimate of upcrossing rate A* is a random number. 
Therefore a confidence interval needs to be calculated in order to judge the closeness of 
the estimate and theoretical value. 

Two methods of calculation of the confidence interval for the upcrossing rate 
were considered in the section above. The first one considers the estimate of the average 
number of crossings per record (see formula 1.45): 

<=7r5X= 3-605 
V 

(1.85) 
R   H 

This figure is assumed to follow normal distribution with the mean value equal to itself: 

IS 



/»(/»,' )= ml = 3.605 

The variance of this estimate is: 

Vl 
|/(w;) = -^ = ^-(l-p') = 0.018007 

N*     N* 

(1 86) 

(1 87) 

For a confidence level of (3=0.95, the half width of the confidence interval for m'   is: 

e - 1.959964 • ^V(m\.) = 0.263007 (188) 

This yields the following values for lower and upper boundary for the rate of upcrossings 
(see equation 1.57): 

*L 5 -0.001857 ;    X* 
T 

^-^ = 0.002149 (1 89) 

The second method is to calculate the confidence interval for X directly from the random 
variable NU, using its binomial distribution with parameter p* estimated with formula 
(1.79) with the boundaries defined by formulae (1.65) 

NU   =721 

LB(NU') = Q l"^-669   ;   UB(NU-) = d!1 + ^ 
2   ) I   2 

774 
(1 90) 

The boundaries of the confidence interval for X are given by formula (1.66): 

X i, * 
LB(NU ) 

= 0.001858 ;   X'   = 
UB(NU') 

NRTR 

0.00215 (1 91) 

Both methods gave almost identical results for the confidence interval. The theoretical 
value of the upcrossing rate is contained within the confidence interval, as shown in 
Figure 1.4. 
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Figure 1.4 Confidence Intervals for the Upcrossing Rate Calculated with Normal or Binomial 
Distribution for a Level of 7.5 m 
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The reason the results of two different methods are so close is the relatively large 
number of crossings. With a large sample, the binomial distribution of the total number 
of crossings can be very well approximated with the normal distribution with the 
following mean value and variance: 

in, NU' = 721 ;    Vm = Np\\ -p) = 720.28 (1.92) 

The binomial distribution of total number of crossings with parameter p* and normal 
distribution with mean value and variance (1.90) are shown in Figure 1.5. 

0.015 

0.01 

0.005 

f(NU) Normal 
Binomial 

600 650 700 750 
Number of Crossings NU 

800 850 

Figure 1.5 Normal and Binomial Distribution of Number of Crossing for the Level 7.5 m 

The difference between the two distributions can be slightly more if the level for 
crossing is raised and number of crossings is less, but even in the case of level 11 m with 
only 10 crossings, the difference in confidence intervals calculated with the two different 
methods is not significant, see Figure 1.5 and Figure 1.6. 
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Figure 1.6. Normal and Binomial Distribution of Number of Crossings for the Level 11 m 
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Figure 1.7. Confidence Intervals for the Upcrossing Rate Calculated with Normal and Binomial 
Distributions for a Level of 11.0 m 

1.2.4.   Mean Time Before and Behveen Events 

An estimate for the rate of events can also be evaluated from statistics of time 
before or between events using formula (1.35). This provides an important link to 
reliability engineering, where time to failure is one of the principal metrics. 

In general, stability failure can be considered in terms of conventional reliability 
theory (Sevastianov, 1963, 1994). Most of engineering practice in reliability works with 
statistics of time-to-failure, where the Exponential Distribution is only one of many 
models used (see, for example Meekar and Escobar 1998). One of the authors applied 
this approach for stability failures using statistical data resulting from numerical 
simulation (Ayyub, et al 2006). These data included time before failure, so a classic 
reliability approach was used. The main advantage of such an approach is that it does not 
require a-priori knowledge of the distribution of time before or between the failures. 
While an exponential distribution was used, it is not required and any other appropriate 
model could be applied. 

The assumption that time before or between failures follows an exponential 
distribution allows significant simplification of the problem as only one parameter needs 
to be estimated. As shown above, the exponential distribution is derived formally from 
upcrossing theory assuming the independence of upcrossings (this assumption is 
considered in details in the next section). The exponential distribution connects the mean 
number of upcrossings and parameters of the distribution of time before or between the 
failures. 

The assumption of an exponential distribution does not contradict to experimental 
results obtained by Ananiev and Savchuck (1982). A description of these experiments (in 
English) is available from Belenky and Sevastianov (2007). 

Once the exponential distribution is accepted a-priori, it can be demonstrated that 
counting events provides a more efficient way to estimate the distribution parameters. To 
carry out such a demonstration, the wave dataset described above was used. In addition 
to counting upcrossings, a sample of time between crossings (including the interval 
between the start and the first crossing) and a sample of intervals before the first crossing 
have been populated: 
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Tcrt=tMJ-tltJ        k = \2...N„ (1.93) 

Here Tcr is the set of time intervals between upcrossings, index /' relates to r 
crossing occurring at/ record, & is a counter for upcrossing for the entire dataset and A',, 
is total number of upcrossings in the dataset: 

1fJ=Kj (1.94) 

Here If is time before the first upcrossing and the index / refers toy   record. 

The estimate of the mean value for the time between and before the crossings is: 

"4= —Zrcr* (195) 

The estimate ml    is a random number, as it is a finite sum of random variables 
tcr 

with an exponential distribution. The distribution of a sum tends to normal per the 
Central Limit Theorem (Strictly speaking, it is a truncated normal distribution as the 
estimate of mean time cannot be negative). 

As the mean value is an unbiased estimate, the mean value of its distribution 
equals to the estimate itself (1.93), while the variance is expressed as: 

F('"*")=^r (1%) 

The variance of time between upcrossings y*   can be estimated as: 

K,-~l(nr,-mJ (1.97) 
*=1 

Then, the estimate of the mean time between crossings is expressed as: 

Here ml r,an^ m'TcrL are upper and lower confidence interval boundaries of the estimate. 

The estimate of the upcrossing rate can then be expressed as: 

XT = (mlr j '  J     Xn  = (mTcrl ) ' S     ^71 = (mTcrV ) ' < ' •"> 

Where )CT is the upcrossing rate estimate based on time between upcrossings while JL* 

and X'n are the upper and lower boundaries of the confidence interval, respectively. 

Another estimate can be evaluated using only time interval before the first 
upcrossing: 
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"'/„ = 
Nr„ 

frfk d.ioo) 
*=l 

Here /V/(7 is number of records with at least one upcrossing. The boundaries of the 
confidence interval are calculated in a manner similar to formulae (1.94-1.97) 

(1.101) 

- K„, ]V(mFer) (1.102) 

Kr=1^-^t\Tfk-m)J    ;    V(mhl) 

^FT = (mFcr) '  i      ^Fl    = (mFcrl )  '  '>      *•«   = WFCH   ) ' (1.103) 

Here V*  is the estimate of the variance of the time before the first upcrossing.   | (m)   ) 

is the estimate of the variance of the mean of time before the first upcrossing. m) ,   and 

m'iri  are the upper and lower boundaries of the confidence interval for the mean time 

before the first crossing.   \'fl, X    t and X'FL are the estimates of the upcrossing rate 

based  on  the  time  before  the  first  crossing and  its  upper and  lower  boundaries, 
respectively. 

Figure 1.8 compares the theoretical rate of upcrossing for a level of 5 in with 
estimates carried out with several methods. The data set consists of 5407 events based on 
the previously described numerical example. As is can be seen from this figure, all the 
estimates contain the theoretical value in their confidence intervals, therefore all the 
methods were able to yield correct result in this case. It is also clear from the Figure 1.8 
that the methods based on counting of events and time between events provide better 
estimates then the method based on the time to the first upcrossing. as the latter one 
utilizes a smaller sample. 

Figure 1.9 compares theoretical rate of upcrossing for a level of 9 m with 
estimates carried out with several methods. The data set consists of 153 upcrossings 
totally and I I 1 first upcrossings. The estimates obtained with time between or before the 
crossing(s) do not include the theoretical value in their confidence intervals, while the 
method based on counting events still yields a correct estimate. 

The reason why time-based estimates are biased is that the sample is limited in 
time. It cannot include any data beyond the length of a record. Therefore the mean time 
before the crossing is biased towards smaller values and rate of events overestimates the 
true value. The standard way of correcting such a bias is a procedure of censoring (sec. 
for example Meekarand Escobar, 1998). 
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Figure 1.8. Comparison of Different Methods to Estimate Lpcrossing Rate for the Numerical 
Example for a Level of 5 m (Total Number of Upcrossings 5407). 
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Figure 1.9. Comparison of Different Methods to Estimate Upcrossing Rate for the Numerical 
Example for a Level 9 m (Total Number of Lpcrossings 153). 
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Subsequently a censoring procedure (Ayyub, et al, 2006) was applied to estimate 
the rate of events from time intervals before the first upcrossing. The sample is made up 
in the following way: 

\TJ\    if    Nr/>0 
T*' = U •'   Co 

The censored mean time before the first crossing is expressed as 

1    £• 
mFC 

N,,r 
ZTfck (1.105) 
k=\ 

Here NR is a number of records while /V,.,,. is the number of records with at least one 
upcrossing. 

Direct evaluation of the confidence interval of the censored mean may present 
certain difficulties. If the number of observed crossings is small, the variance estimate of 
the censored data also tends to be small as most of the data points equals to the duration 
of simulation. Small variance estimate leads to a narrow confidence interval; this creates 
a paradox as decreasing of the sample size is expected to increase statistical uncertainty. 
This paradox is caused by the fact that censored data are expected to estimate bounds, not 
the actual value; see, for example, (Meekar and Fscobar 1998). Generally censoring the 
data does not increase or decrease the statistical uncertainty. Therefore, the width of 
confidence interval for the uncensored mean estimate can be used with censored mean 
estimate; 

*>« = ('"/*(• j' ;   k«7 = x'iv -Xn + XFC ;   X*FCl = X'n -X'hT + X'Fl.      (1.106) 

Here X*     X'nr , X'n:i are the estimated event rates based on the censored time before the 

first crossing and its upper and lower boundaries, respectively. 

Figure 1.10 compares theoretical rate of events with statistical values estimated 
with two different methods; the level of upcrossings was equal to 9 m and the sample size 
was 111. The rate of events estimated with time between events is not considered here, as 
it is not clear how to censor this type of data. 

As it can be seen from Figure 1.10, the censoring removed the bias observed in 
Figure 1.9; so both methods have shown a correct estimate for the example considered. 
The confidence interval for the second method (based on censored time to the first event) 
is slightly wider, as a sample size for the time before the tlrst upcrossing is less than the 
sample size for counting crossings (111 vs. 153; 34 records had more than one 
upcrossing). 
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Figure 1.10.   Comparison of Different Methods to Estimate Upcrossing Rate for the Numerical 
Example for a Level of 9 m (Total Number of Upcrossings 153, Number of First Upcrossings 111). 

1.3.Distributions Related with Upcrossing Events 

1.3.1.   Limitations ofPoisson Distribution 

As it was shown in the previous section, the derivation of the Poisson distribution 
leads to a very important practical result: the distribution of time before or between 
crossings is exponential. To characterize the exponential distribution, only one parameter 
has to be estimated. This parameter is the average number of upcrossings per unit of time 
(mean upcrossing rate). It is equivalent to the inverse of the average time 
before/between crossings. Once this parameter is known, the probability of at least one 
crossing can be trivially evaluated for any given time of exposure. 

The derivation of the Poisson and exponential distributions were, however, not 
free of assumptions. Application of the binomial distribution assumes repeating 
independent Bernoulli trials on each time step. A Bernoulli trial is a random event that 
can produce only two outcomes, usually called "success" or "failure". These outcomes 
are related here to either the occurrence or non-occurrence of an upcrossing at this instant 
of time. 

The independence of Bernoulli trials, however, is not always guaranteed for the 
upcrossing of a general stochastic process (i.e. it is not a white noise and its 
autocorrelation function is generally not a delta-function). Stochastic processes, such as 
wave elevation, wave slope, or roll angle, posseses a certain amount of inertia. The 
instantaneous value of the process cannot change abruptly. Therefore the values in 
neighboring time steps are dependent, provided the time step is reasonably small. This 
dependence has a finite duration and the time it takes the autocorrelation function to drop 
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below a given level is often used as a measure of this dependence. As it can be seen from 
Figure I.I I (a zoomed in version of Figure 1.2), it takes 40-45 seconds for this 
autocorrelation to die out to a level below 0.05. While this criterion remains somewhat 
arbitrary, it can still be used in the first expansion. For a Guassian (normal) process, the 
autocorrelation function captures all of the information about dependence. For non- 
Guassian processes, the absence of correlation does not guarantee independence. 

-0.5 

Figure 1.11. Sample Autocorrelation Function (Zoomed in From Figure 1.2) 
Therefore, if time between neighboring upcrossing events exceeds the time for 

autocorrelation function to die out, one can assume these events are independent. The 
time between the events, however, is a random number; therefore, the judgment on 
independence only can be made in probabilistic sense. 

Since the exponential distribution of the time before and between the events is the 
most important consequence of the Poisson distribution, it makes sense to evaluate if 
such hypothesis contradicts observed data. Standard statistical procedures used for these 
purposes can be employed as part of the procedure to test if impendence of upcrossing 
can be assumed and Poisson distribution is applicable. 

1.3.2.   Distribution of Time before Event 

Following the previous works of Ayyub, et al (2006) and Belenky, el al (2007), a 
sample of time before the first upcrossing is analyzed. This analysis is carried out for 
several crossing levels to examine the influence of the dependence between crossings and 
sample size on the statistical estimates of the upcrossing rate. 

For the given example with a Gaussian distribution, the theoretical mean time 
before of between events may be calculated by simply inverting formula (1.20) or (I .S3): 

m,.. = /(tf)j/(<j>)<j>4 K = J— exp 
a 

IVr. 
1.107) 

Formula (1.107) is an exponential function. The dependence is depicted in Figure 
1.12 for the wave example considered in this section. It can be seen from this figure that 
the time for the autocorrelation function to die out corresponds to a level of 4.2-4.4 m. 
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Figure 1.12. Theoretical mean time before ore between upcrossing events shown as a function of 
level of upcrossing a 

It is well known the mean value and standard deviation of the exponential 
distribution are identical. This condition was analyzed by Belenky el al (2007) as a 
possible indicator of the applicability of the Poisson distribution and it was shown to not 
be the best way. At the same time, a lower boundary of their confidence interval 
compared with the autocorrelation decay time may produce relevant information. 

The estimate of the mean value and variance of the time before the first event is 
given by formula (1.98) and (1.99), while the confidence interval for mean value estimate 
can be calculated with formulae (1.100). In order to calculate confidence interval for the 
variance estimate, the value of the fourth central moment A/4 is necessary: 

V{V'}= — M. N   3   (V*)2 

N N(N-\) 
(1.108) 

Here N is number of points and V* is estimate of variance. Estimating the fourth central 

moment directly form a statistical sample is known to be difficult, due to sensitivity of 
the numerical values to outliers. Therefore expressing a fourth moment through the 
variance using a certain assumption of the character of distribution has been a standard 
technique. As the distribution of the time before the first event is expected to be 
exponential, Belenky, el al (2007) used the relation derived from the exponential 
distribution: 

A/4=9F2 (1.109) 

This leads to the following expression for the variance of the variance estimate: 
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v\v 8/V-6 
N(N-\) 

ivy (1.110) 

Once the mean value and variance of the variance estimate are found, a normal 
distribution is used to find boundaries of the confidence interval. This approach is quite 
common, however, caution should be exercised, as the normal distribution is defined 
from -oo to +00, while variance by the definition is a non-negative value. Therefore, an 
additional check is needed or the distribution must be truncated at zero. 

The standard deviation is calculated: 

(I.Ill) 

I.I 

The results are shown in Figure 1.13 for the level of crossing of 5 m. As it can be 
seen, the estimates of the mean value and standard deviation are statistically identical. 
Also the lower boundary of the mean value is above 50 seconds, i.e., more than the 
interval of time for the autocorrelation function to die out. Both of these observations are 
symptoms of the exponential distribution. 
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Figure 1.13. Estimates of mean value and standard deviation for time before the first event, level of 
crossing 5m, 200 crossings total. 

Figure 1.14 shows a histogram, the theoretical distribution, and three distributions 
based on different statistical parameters. For the level at 5m, all 200 records had at least 
one upcrossing, so the size of the sample equals 200. The bin width for the histogram was 
calculated as (Scott. 1979): 

Time . s 

• ,CT*' 

II - 

The histogram in Figure 1.14 is presented in terms of PDF: 

H 
h. =• 

W -N 

(I.113) 

(1.114) 

Here //,- is the number of cases that fits in the / bin and N is total number of cases. 

A Pearson chi-square goodness-of-fit test was performed for each of the distributions. 
The value of x". number of degrees of freedom J, and P{x~,d) - probability that the 
difference between the fit and the histogram is caused by random reasons are also placed 
into Figure 1.14. The test shows that the fit is good for all four curves, as the probability 
is well above the accepted significance value of 0.05. 
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Figure 1.14. Distribution of time intervals before the first crossing. Level of crossing 5m, 200 
crossings total. 

Another example considered above was for 9 m level of crossing. The importance 
of this example is that it contains 89 records without any upcrossings, so the effect of the 
censoring technique can be demonstrated. Figure 1.15 shows a histogram (in terms of 
PDF) along with distribution curves using different parameters as well as results of 
Pearson chi-square goodness-of-fit test. The insert shows estimates for mean value and 
standard deviation with the appropriate confidence interval. 
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Figure 1.15. Histogram of Time Before the First Crossing for a Level of 9m (111 Crossings Total) 
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The estimates of the mean value and standard deviation are statistically di Herein; 
their confidence intervals do not have any overlap. None of the curves fit the histogram. 
Obviously, the hypothesis of an exponential distribution is not supported by the observed 
data. At the same time, it is known from the upcrossing theory (and was shown in the 
derivations above) that time intervals before the first crossing must follow an exponential 
distribution if the number of upcrossings follows a Poisson distribution. 

The most important condition to satisfy is the independence of upcrossings. For 
the considered example with a Gaussian process, independence of upcrossings is 
achieved when the time between the neighboring upcrossings exceeds the time for the 
autocorrelation function to die out. Increasing the level of crossing increases the mean 
value of the time before upcrossing from about 60 seconds for a level of 5 m to about 800 
seconds for a level of 9 m. At the same time, the hypothesis of an exponential 
distribution was not rejected for a level of 5 m, but was rejected for a level of 9 m. The 
reason for this rejection is likely to be unrelated to the applicability of the Poisson 
distribution to the number of crossings. 

In a sense, a similar situation was observed in Figure 1.9. where the results for 
upcrossing rates calculated by counting events or averaging the time before the first event 
were found to be drastically different. The reason for the difference was the limited 
simulation duration, which can bias the average time, but not the number of events. This 
discrepancy was resolved by censoring the data of time intervals before the first 
upcrossing, where it was assumed that more upcrossings could be encountered if the 
duration of records would be longer. 

The same assumption can be made for a histogram, as well, by adjusting the total 
number of cases: 

Here NR =200 is the total number of records. Obviously, the normalization condition for 
this expression is no longer met, as the rest of the data is assumed to be beyond the length 
of a record. 

The "censored" histogram is shown in Figure 1.16 along with the same set of 
distribution curves. The Pearson chi-square goodness-of-fit test has shown that only the 
curve based on uncensored average time before the first upcrossing does not fit the data. 
All other curves show robust agreement with the data. 

To complete the examination of the time before the first upcrossing. we now 
examine cases where the conditions for a Poissonian process are violated. The crossing 
level has been set to 3 m where 15201 upcrossings were observed. As it can be seen 
from Figure 1.17. most of upcrossings are clustered and there are many cases when 
neighboring periods have upcrossings. At the same time, some peaks remain below the 
level and some of the time between crossings may be longer than just a period. 
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Figure 1.17. Record 1 of the Process of Wave Elevations; Upcrossing Level 3 m 

Figure 1.18 shows a histogram of the time before the first upcrossing. The 
estimates for the mean value and variance (with confindence interval) are shown in the 
inset of the figure. Despite the fact that these estimates are statistically equal, the entire 
confidence interval of the mean value estimate is well below 40 seconds- the time 
duration needed for the autocorrelation function to die out. 

A Pearson chi-square goodness-of-fit test rejects the exponential distribution 
based on the theoretical upcrossing rate as well as based on the upcrossing rate estimated 
from counting of events. At the same time, the test does not reject the exponential 
distribution based on estimate of mean time before the first upcrossing (there is no 
difference between censored and uncensored mean values, as every record has at least 
one upcrossing). These results may seem confusing, but certain conclusions can still be 
drawn. 
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Figure 1.18. Distribution of time intervals before the first crossing. Level of crossing 3 m. 200 
crossings total. 

The equality of mean value and standard deviation is a necessary, bin not a 
sufficient condition for the exponential distribution. If the mean value and standard 
deviation (including confidence interval extents) are smaller than the time required for 
the autocorrelation function to die out, the Poisson distribution is likely inapplicable due 
to data dependence. The entire confidence interval laying in the domain, where 
autocorrelation still is not insignificant (see Figure 1.11), suggests possible dependence 
of neighbor upcrossing and therefore the inapplicability of Poisson distribution. 

There is a difference between the upcrossing rate calculated from the mean value 
of time before the upcrossing and by the counting of events, exhibited in the different 
outcomes of the goodness-of-fit test. Based on the previous paragraph, the difference 
between the two could be explained by insufficient duration of a record or dependence of 
neighboring upcrossing resulting in violation of the Poisson distribution. Since every 
record has at least one upcrossing, there is no difference between censored and 
uncensored data. Therefore, the reason for the discrepancy is the violation of Poisson 
distribution. 

The derivation of the theoretical formula for upcrossing rate (equations 1.10-1.19) 
relied only on the assumptions of continuity and stationarity, but not on the assumption of 
the Poisson distribution. The formula (1.20) is correct for any level of crossing and the 
theoretical curve in Figure 1.19 can be considered as a true answer. This confirms the 
conclusion made above on the non-Poissonian character of the distribution of the number 
of upcrossings for the level of 3m. 

Further lowering the crossing level down to I m in order to observe what 
changes, if any, there are, we see an upcrossing on almost every period, see Figure 1.19. 
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Figure 1.19. Record 1 of the Process of Wave Elevations; LJpcrossing Level 1 m 

Figure 1.20 shows a histogram of time before the first crossing (in terms of PDF) 
for the level of crossing of lm along with estimates of mean value and standard 
deviations. In contrast with the previous example, with 3 m level of crossing, there is no 
indication of the applicability of the exponential distribution for the time before the first 
crossing or the Poisson distribution for the number of upcrossings. 
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Figure 1.20. Distribution of Time Before the First Crossing for a Level I m (200 Crossings Total) 

The histogram shows a peak around 5 seconds. This is a little short than a half of 
the mean zero-crossing period of 11.6 seconds and, probably represents the most 
probable time from the start until the first upcrossing is encountered. 

Note that if a record starts above the given level, the first upcrossing will only be 
detected when the process comes back below the level and crosses it again. This may 
have an influence on the shape of the histogram. 
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1.3.3.   Distribution of the Time Between Events 

The derivation of the formulae for the time between and before events (1.30-1.37) 
is based on the Poisson distribution for the number of upcrossings and targets a time 
without upcrossings. This random number can be interpreted as the time before the first 
upcrossing or as the time between upcrossings. Therefore, the exponential distribution 
must be equally applicable to both these random variables. Consideration of the 
distribution of time before the first event, as in the section above, has shown that the 
duration of a record is another major factor. In order to demonstrate the exponential 
distribution statistically the records have to be long enough, so all (or a statistically 
significant number) of records must have at least one upcrossing in addition to satisfying 
Poisson distribution conditions. 

The objective of this section is to demonstrate, with numerical examples, how the 
upcrossing level affects the statistical distribution of time between events. Setting the 
lower level gives a statistically significant number of upcrossings (or records with 
upcrossings), but may lead to a violation of the Poisson distribution condition, if 
upcrossings occur too frequently to be independent random events. On the other hand, if 
the level is too high, the duration of a record may be insufficient. 

Figure 1.21 shows a histogram (in terms of PDF) of time intervals between 
upcrossings along with estimates of mean value and standard deviation. Results of 
Pearson chi-square goodness-of-fit tests are also shown for the five curves as specified in 
the figure. The confidence intervals of the mean value and standard deviation have 
significant overlap. Also, the lower boundary of the confidence interval for the mean 
value estimate is about 340 seconds, enough time for the autocorrelation function to die 
out, so applicability of the exponential distribution is not excluded. The shape of the 
histogram also suggests exponential distribution. 
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Figure 1.21. Distribution of Time Between Upcrossings for a Level of 7.5 m (721 Crossings Total, 1% 
Records with at Least One Crossing) 
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As indicated above, five different curve fits were tried. All of these curves were 
exponential distributions but the parameter was calculated differently.. The Pearson chi- 
square goodness-of-fit test shows that three of the methods for selecting the distribution 
parameter yield a fitted distribution that is not rejected (the probability is greater and 
0.05, the generally accepted significance level), that is the curves match the data. At the 
same time two curves show a probability less than 0.05, so the hypothesis is rejected; 
meaning that these particular curves do not match the data. 

The distribution parameter calculated through averaging of the intervals between 
upcrossings (1.95) passes the test. This confirms the above observation on exponential 
character of the distribution, in general. 

However, theoretical distribution does not match the data. The distribution 
parameter was calculated by formula (1.83) using variance of wave elevations and their 
derivatives "as discretized". This discrepancy is caused by an insufficient length of 
record for this particular level of crossing (Belenky, et al, 2007). The reason is that the 
sample is limited by the length of a record and intervals between upcrossing longer than 
duration of a record are absent from the sample. These intervals are statistically 
significant for the level of 7.5 m. 

The rate of events calculated as an average number of upcrossings per unit of time 
(1.82) was found to be quite close to the theoretical value, see Figure 1.22. Therefore, 
the exponential distribution based on this value is very close to theoretical one. Then for 
the same reason, as the theoretical one, it is rejected by the observed data; as the intervals 
between upcrossings that are longer than the duration of a record still have statistical 
significance for the considered level. 
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Figure 1.22. Comparison of Different Methods to Estimate the Parameter of the Exponential 
Distribution (Upcrossing Rate) for a Level of 7.5 m (721 Crossings Total, 196 Records With at Least 

One Crossing) 

The distribution based on the uncensored average time before the first upcrossing, 
is not rejected by the observed data. This method gives similar results to the one based 
on average time between the upcrossing, see also Figure 1.22. It is suggested by both 
Figures Figure 1.21 and Figure 1.22 that the average time before the 1st upcrossing has a 
bias leading to overestimation the rate of events, as was discussed in the previous section. 
This is notable, that the bias exists for the level of 7.5 m, with only 4 records without 
upcrossing, however it was enough to move the estimate away from the theoretical 
solution and provide a significant probability that the fit to biased data is good. 

The censoring procedure moves the estimate back to the theoretical solution; 
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however, the relatively wide confidence interval still allows the goodness-of-fit test not to 
reject the distribution based on censored average time before the first crossing. 

Figure 1.23 shows a histogram (in terms of PDF) of time intervals between 
upcrossing along with estimates of the mean value and standard deviation calculated for 
a level of 9 m. The results of the Pearson chi-square goodness-of-fit test are also shown 
for five curves as specified in the figure. None of them fit. Confidence intervals for 
estimates of the mean value and standard deviation do not have any overlap. Similar 
observations were made for distribution of time intervals before the first crossing, sec- 
Figure 1.15. However, the "censored" histogram in Figure 1.16 has confirmed that this 
was the case when there is a significant deficiency in the duration of the records, as the 
censored data confirms that the distribution is, in fact, exponential. 
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Figure 1.23. Distribution of Time Between Upcrossings For a Level of 9 m (153 Crossings Total, 111 
Records with at Feast One Crossing) 

It is not clear how censoring can be applied for time intervals between the events; 
therefore, the case in Figure 1.23 cannot be resolved with this kind of statistics. In 
reality, the distribution, of course, must be exponential, as increasing the level cannot 
lead to violation of the Poisson distribution. 

Comparing Figure 1.22 and Figure 1.23 is useful as it shows a tendency in the 
behavior of the curves when the level is increased. The theoretical distribution 
practically coincides with the curves based on average number of upcrossings per unit of 
time and on censored average time before the first upcrossing. The curves based on 
uncensored average time before the first upcrossing and average time between upcrossing 
move away from theoretical distribution, but remain close to each other. This tendency 
can also be seen in Figure 1.8 and Figure 1.9. 

The opposite tendency can be observed when the crossing level is lowered, see 
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Figure 1.24. All five curves are visually closer to each other in comparison with Figure 
1.21. Appearance of the histogram also suggests the exponential character of 
distribution. The confidence intervals for the estimates of the mean value and standard 
deviation have significant overlap. This also suggests that the exponential distribution is 
possibly applicable. 
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Figure 1.24. Distribution of Time Between Upcrossings For a Level of 6.75 m (1421 Crossings Total, 
All 200 records With at least One Crossing) 

Only the distribution based on average number of crossings per unit of time is 
rejected by the goodness-of-fit test, while all other fits are supported by the data. The 
reason can be seen in Figure 1.25, where all the parameters are compared. First, the rate 
calculated as an average of time between the upcrossing still is different from the 
theoretical value. Apparently, duration of the record is still insufficient. The rate of 
upcrossing in Figure 1.25 calculated by counting includes the theoretical solution in its 
confidence interval, but the middle of the confidence interval happens to be a bit lower 
than the theoretical solution. This small difference was enough to reject the distribution 
based on counting of events. 

Further lowering the crossing level (5.75 m) leads to an unexpected result: none 
of the curves fit the data, however all the curves are very close to each other, see Figure 
1.26. At the same time, estimates of mean value and standard deviation have substantial 
overlap. In addition, the lower boundary of the 95% confidence interval lies around 100 
seconds. This is still enough time for the autocorrelation function to die out. Detailed 
analysis shows that the absence of agreement is due to the value at the first bin; it is 
noticeably higher than expected. Additionally, the value at the second bin seems to be a 
bit lower. This may suggest some sensitivity to width of the bin that was calculated with 
formula (1.113) so far.   A relatively small change of the bin width, from 23.9 s (Figure 
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1.26 upper) to 30 s (Figure 1.26 lower), eliminates this effect.   All of the curves are 
supported by the data in the lower histogram shown in Figure 1.26. 
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Figure 1.25. Comparison of Different Methods to estimate parameter of the exponential distribution 
(upcrossing rate). Level of crossing 6.75 m, 1421 crossings total, all 200 records with at least one 

crossing 

Figure 1.27 shows histograms for the crossing level of 5 m. The top histogram in 
the figure shows the histogram with bin width according to formula (1.113); similar to 
the previous case, all the curves are very close to each other, but none of them fit the 
data. Now the value in the first bin is very small, while the second bin gives a very large 
number. It is still possible to make curves fit by a manual change of the bin width. 
However, the required change is much larger, increasing the bin width from 12 s (upper 
histogram in Figure 1.27) to 36 s (lower histogram in Figure 1.27). Setting the maximum 
time to 400 s was also needed in order to acheve satisfactory goodness-of-fit. 

At the same time, other symptoms of exponential distribution are still present; the 
estimates of the mean value and the standard deviation show substantial overlap in their 
confidence intervals. The lower boundary of the confidence interval for the mean value 
estimate is about 62 seconds, still enough time for the autocorrelation function to die out. 

The first bin of the upper histogram in Figure 1.26 and the second bin of the upper 
histogram in Figure 1.27 correspond to the value of 10-15 seconds. This range includes 
the mean period of the stochastic process. This may indicate that the reason the 
histogram deviates from the exponential distribution is the presence of wave groups. The 
level is low enough so that successive waves in a group all cross it. As these wave 
groups are still rare, they cannot yet break the Poisson distribution completely. Some 
integral characteristics are still present. At the same time, they are frequent enough to 
cause a local distortion of the exponential distribution, which is detected by the chi- 
square goodness-of-fit test. 
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Figure 1.26. Distribution of Time Between Upcrossings For a Level of 5.75 m (3269 Crossings Total, 
All 200 Records With at Least One Crossing) 
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Figure 1.27. Distribution of Time Between Upcrossings For a Level of 5 m (5407 Crossings Total, All 
200 Records With at Least One Crossing) 

To complete the study of influence of the crossing level, two more distributions 
are considered here. At the level of 3 m, shown in Figure 1.28. the estimates of the mean 
value and standard deviation do not have any overlap of confidence intervals. Both 
confidence intervals are very small, as would be expected from a sample containing 
15,201 data points. The mean value range is below 25 seconds, where the autocorrelation 
function has not entirely decayed. The curves are separated in two groups, as the mean 
value of time before the first upcrossing is apparently no longer equal to mean time 
before the events nor is it equal to the inverse of the event rate. 
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Figure 1.28. Distribution of Time Between Upcrossings For a Level of 3 m (15201 Crossings Total, 
All 200 Records With at Least One Crossing) 

The histogram in Figure 1.28 demonstrates a pronounced peak around 10-15 
seconds; its character is obviously not exponential. A similar picture can be seen when 
the level is set to I m. see Figure 1.29. The separation of the two groups of curves is 
even larger, while the shape of histogram may bear some resemblance to the normal 
distribution. 
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Figure 1.29. Distribution of Time Between Upcrossings For a Level of 1 m (25543 Crossings Total, 
All 200 Records With at Least One Crossing) 
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1.3.4.   Cumulative Distribution of Time between Events 

The derivations (1.30-1.37) prove that time interval between uperossings must 
follow an exponential distribution if the number of uperossings during a fixed lime is 
governed by the Poisson distribution. However an attempt to use statistics for the time 
interval between uperossings encounters certain difficulties. Computing the upcrossing 
rate calculated as the inverse of the average time between uperossings may be prone to a 
bias, which is caused by insufficient record duration. 

Therefore, it is desirable to have another method to check if the assumption of a 
Poisson distribution is still valid, that would be free of drawbacks described above. One 
such method was described by Belenky, et a/., (2007). This method was based on 
estimating the probability of at least one upcrossing during a given time span. 

Consider a time interval from a time instance ti, until te with the duration AT= /,- 
tb- The probability that at least one upcrossing occurs during this time interval is 
estimated as: 

Pj(k *0) = 1- 
N. 

(1.116) 

Here k is number of uperossings, yV*=o is a number of records without a single upcrossing 
within the given interval and NR is total number of records available. This calculation is 
illustrated in Figure 1.30, where uperossings are shown as black dots. For the example 
shown in this figure, the probability of at least one upcrossing from the instant /„ to the 
instant te is 0.75. Only one record out of four did not have any uperossings during the 
interval T. 
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Figure 1.30. On Estimation of the Probability of at Least One Event During Given Interval    T 

This estimate tends to theoretical probability as the number of records goes to infinity: 

Pr(**0)= lim(/>;U*0))= lim N, 
,Y 

(1.117) 
K    J 

Assuming a Poisson distribution and for the number of uperossings leads to the following 
expression: 
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N„-*eC 

N k .n 

v N 
= PT{k±0) = \-exp{-kAT) (1.118) 

R   J 

Here X is the theoretical upcrossing rate. For a finite number of records, equation (1.116) 
can be expressed in terms of the estimate of the rate A.*: 

V 
l_i!i=2. = l_exp(-X*Ar) 

.V 

Where the estimate of rate V can be evaluated as: 

(1.119) 

X' =—-In 
AT 

N k=0 

N 
(1.120) 

R   ) 

As it was shown above (see formula 1.33), expression (1.117) can be interpreted as an 
estimate of the CDF of the time between crossings calculated for argument A7": 

N,. 
F'(AT) = \-exp(-X'AT)=l-- ' k-u 

N< 
(1-121) 

Since the stochastic process is considered stationary, the theoretical probability TV(k^O) 
is not time dependent. Therefore, the uncertainty of the estimate F {AT) can be reduced 
by averaging its value multiple intervals of size AT: 

Nkj!h=iLT,tt=(i + \)tiTf F (AT) 
X %- 

AT    /'=0 

(1.122) 

Here Nk=o(thJe) is the number of records that did not have any upcrossings from t/, till /,.; 
N&T is a number of whole intervals AT contained a record length 7$: 

N„ = \/ AT 
(1.123) 

Formula (1.120) is an estimate for the cumulative distribution function for one value of 
AT. To calculate the rest of the estimated functions, all the calculations have to be 
repeated for an array of points 7} 

{ry}=A7\ 2A7\3A7\.„   /AT,.., Ts 

Finally, the estimate of the CDF at points 7) can be expressed as: 

,~_JATJf 
F   = 

Nk_0{th=ijAT,tc = (i + l)jAT)^ 

Ne 
J = h.,N&T 

(1.124) 

(1.125) 

To check the goodness-of-Fit of the exponential CDF, Belenky et al.. 2007 used the 
Kolmogorov-Smirnov test (also known as the K-S test) for goodness-of-fit.. The 
description of the K-S test approach, taken from Belenky et al., 2007, is provided below 
for convenience. The metric for the goodness-of-fit is derived from the absolute value of 
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the maximum difference between the suggested and statistical CDF. 

D = max\F"-F(tl)] (1.126) 

The criterion itself is expressed though the maximum difference D: 
v = D-Vn (1.127) 

Here, n is the number of data points. It is proven that if the statistical estimate o\ 
cumulative distribution function is evaluated for independent data, for any distribution 
F(x), with increasing number of points: 

Iim(v£A.)=l- Y(-I)*exp(-2*V) (1.128) 

In practice, an upper bound of I04 (instead of infinity) for the summation yields 
satisfactory results. Formula (1.126) yields the probability that the difference between 
the observed and suggested distributions is caused by random reasons, if n is large 
enough. 

P««,=l-Z(-l)*«p(-2*V) (1.129) 

It should be noted, however, that the K-S test does not account for the number of 
statistical "degrees of freedom", and it is only sensitive to a sample size. This implies that 
the theoretical distribution must be suggested on the theoretical background only and that 
it should not contain any parameters derived from the statistical sample. 

Belenky el at., 2007 used the K-S test to check if upcrossings follows Poisson 
flow. However that source does not contain any information on how to set step A7. Here 
it is associated with the bin width for time intervals between the upcrossings: 

.r   3.5a, 
AT- ~^ (1.130) 

V^7 

Here oj is the standard deviation of the intervals between the upcrossing and NT is their 
quantity. 

Figure 1.31 shows the statistical CDF calculated with formula (1.123) along with 
the theoretical curve. The CDF for two levels of crossing are shown here, 7.5 m and 
6.75 m. Other statistics and data for these levels are shown in Figure 1.3-Figure 1.5, 
Figure 1.21, Figure 1.22 and Figure 1.24 and Figure 1.25 respectively. The K-S test did 
not reject the hypothesis of an exponential distribution. The statistical CDF did not reach 
unity for the level 7.5 m, as there were four records without upcrossings at all. However, 
for the level of 6.75 m, all the records had at least one upcrossing, so the statistical CDF 
did reach unity. 
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Level of crossing 6.75 m 
1421 crossings total 
200 records with at least 
one crossing 
0=0.0165 
v=0.622 
/>„TO=0.833 
Hypothesis passed 

Level of crossing 7.5 m 
721 crossings total 
196 records with at least 
one crossing 
D=0.0432 
v=1.160 
/W=0.!354 
Hypothesis passed 

2000 

Figure 1.31. Cumulative Distributions of Time Between Upcrossings for Levels of 7.5 m and 6.75 m 

The outcome of the test for both levels 7.5 m and 6.75 m is not surprising. All 
analysis carried out before have indicated that the exponential distribution was, in fact, 
applicable. As it can be seen from the insert in Figure 1.21, the lower boundary of the 
mean value is around 340 s, which is enough time for the autocorrelation function to die 
out (see Figure 1.11). The overlap between confidence intervals of the mean value 
estimate and standard deviation is significant (See insert in Figure 1.21). 

The hypothesis that time intervals between the upcrossings have exponential 
distribution was not rejected with the Pearson chi-square test (probability 0.77, see Figure 
1.21). This hypothesis was also not rejected by the K-S test, see Figure 1.31. The 
difference between these tests is that the Pearson chi-square test was applied to the 
sample of time intervals between the upcrossing. The Pearson chi-square test has shown 
that the exponential distribution with theoretical parameter does not fit that data 
(probability is only 0.0024, see Figure 1.21). The K-S test in Figure 1.21 has shown that 
the theoretical distribution fits the observed data (probability is 0.13). 

The reason for this difference was actually already explained in the previous 
section. It is a statistical bias of the sample of time intervals between upcrossing. This 
bias is introduced by absence of longer-than-record intervals. This bias decreases the 
mean value of the time between the upcrossing and drives the statistical estimate of the 
distribution parameter (rate of events) up, see Figure 1.22. As can be seen from this 
figure, the bias is absent in the parameter calculated through averaging of the number of 
upcrossing per unit of time. The bias also can be corrected by censoring the estimate of 
the mean time before the first upcrossing. Therefore, rejection of the theoretical 
distribution in Figure 1.21 does not constitute rejection of the hypothesis of exponential 
distribution and Poisson flow as it is the result of the statistical bias. 

This bias is absent in the distribution (1.122) as it is essentially based on counting 
upcrossings rather than on calculating the time interval between them. The absence of 
the bias gives the CDF (1.122) an advantage over a histogram of time intervals between 
the events. Use of the CDF, however, requires using the K-S test, which has known 
limitations.   Strictly speaking, the K-S test is fully applicable only if parameters of the 
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fitted curve are known a priori and do not come from statistical estimates. As mentioned 
above the K-S test does not have any mechanism to penalize the result for using 
statistically estimated parameters. If these parameters have been used, the K-S test may 
overestimate the probability that the difference between observed data and the fitted 
curve caused by a random reason. Using the K-S test in this example is justified, as the 
true value of the parameter is known. Using the K-S test for the real numerical 
simulation or experimental results where all the parameters are statistical estimates, 
therefore, is not desirable but may be unavoidable. 

The results for the second dataset (the left curve in Figure 1.31), corresponding to 
the level of 6.75 m, are completely analogous. The analysis of the time intervals between 
the crossing shown in Figure 1.24 as well as the insert in Figure 1.24 points out that 
Poisson flow is applicable. The only difference is that all the records have at least one 
upcrossing, so the statistical CDF reaches unity in Figure 1.31 and uncensored and 
censored estimates coincide in Figure 1.25. 

Figure 1.32 shows results for crossing levels of 9 m and 11 m. Only 153 
upcrossings occurred for the level of 9 m and only 111 records (out of 200) had at least 
one upcrossing. The bias of time interval between the crossings was so large that none of 
the curves fit the data in Figure 1.23. Also, probably for the same reason, there was no 
overlap between the confidence intervals of the estimates of mean value and standard 
deviation in the insert on Figure 1.23. As it was noted before, this outcome can only be 
explained by the influence of bias, as there is no reason why the exponential distribution 
should not be applicable when the level is raised and upcrossings become less frequent. 
This statement is supported by comparison of Figure 1.15 and Figure 1.16, where time 
before the first crossing is analyzed. None of the curves fit the data in Figure 1.15. 
Figure 1.16 shows agreement with the censored data for curves based on theoretical 
parameters as well as based on two statistical estimates. The left curve in Figure 1.32 
shows agreement with the data and no censoring is needed. This confirms the bias 
explanation for Figure 1.15. 

0.6 T 

Level of crossing *J m 
153 crossings total 
11 1 records with at lea 
one crossing 
D=0.0327 
v=0.404 
/Yv„=0.997 
Hypothesis passed 

Level of crossing 11 m 
10 crossings total 
10 records with at least 
one crossing 
0=0.0055 
v=0.0174 

P»M>=1.0 

Hypothesis passed 

500 1000 I 500 2000 

Figure 1.32. Cumulative Distributions of Time Between Upcrossings for Levels of 11 m and 9 m 

47 



For the level of 1 lm, only 10 upcrossings were observed. This is not enough data 
for a meaningful histogram of time intervals before the first upcrossing nor for time 
between the upcrossings. However, the methods based on counting number of 
upcrossings still work. Figure 1.7 shows the estimate of upcrossing rate based on average 
number of upcrossing per unit of time, while the right curve in Figure 1.32 shows CDF 
for time between/before the upcrossing. It has very few points, but this was enough for 
the K-S test to be used. The hypothesis of an exponential distribution was not rejected by 
the K-S test. 

Figure 1.33 shows the statistical CDF for the levels 5.75 m and 5.0 m. The 
hypothesis of an exponential distribution is not rejected by the K-S test in either case. 
Analysis of the distribution of the time intervals between the upcrossings delivered mixed 
results. Figure 1.26 shows how results of the Pearson chi-square test become sensitive to 
a small change of the bin width for the level of 5.75 m. To reach a similar result for the 5 
m level the "adjustments" need to be much larger, see Figure 1.27. At the same time all 
other symptoms of exponential distributions are present: substantial overlap of 
confidence intervals of the mean value and standard deviations estimates in the insert of 
both Figure 1.26 and Figure 1.27. Additionally, the distribution of time before the first 
crossing remains exponential for a level of 5 m, see Figure 1.13 and Figure 1.14. 

The conclusion made in the previous section was that the exponential distribution 
was rejected (upper parts of Figure 1.26 and Figure 1.27) because of the values in the 
first bin. This is a reflection of increased cases of upcrossings occurring on successive 
periods; essentially, it is an influence of the group structure of the stochastic process. As 
it was expected in the previous subsection, the local distortion of the histogram did not 
lead to rejection of the exponential distribution based on analysis of the statistical CDF. 
However, it is clear that both levels 5.75 m and 5.0 m are not very far from the boundary 
of applicability of the exponential distribution and Poisson flow. 

OOOOOOOGOO 

Level of crossing 5 m 
5407 crossings total 
All records with at least 
one crossing 
D=0.014l 
v=1.039 
/Vv/>=0.23 
Hypothesis passed 

Level of crossing 5.75 m 
3269 crossings total 
All records with at least 
one crossing 
D=0.0I36 
v=0.7754 
/Vv/>=0.585 
Hypothesis passed 

200 400 

Figure 1.33. Cumulative Distributions of Time Between Upcrossings for Levels of 5.75 m and 5 m 
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To examine when and how the breaking of Poisson flow can be detected by the 
K-S test, upcrossings through levels of 4.75 m and 3 m were analyzed (see Figure 1.34). 
For the 3 m level, Poisson flow is clearly inapplicable, as it can be seen from the Figure 
1.28; the histogram of the intervals between the upcrossing no longer has the appearance 
of an exponential distribution and the confidence intervals in the insert do not overlap. 

The results of the K-S test shown in Figure 1.34 clearly reject the hypothesis of 
an exponential distribution. The shape of the statistical CDF is different from that of an 
exponential curve. This seems to be a natural outcome of the non-exponential character 
of PDF in Figure 1.28. This also demonstrates the robustness of the considered 
technique; combination of CDF (1.122) and K-S test has spotted inapplicability of 
Poisson flow as well as all other methods with exception of analysis of the time before 
the first crossing (Figure 1.18). 

Level of crossing 3 m 
6393 crossings lotal 
All records with at leasi 
one crossing 
0=0.1374 
v-17.0 
/W=o.o 
Hypothesis did nut p;iss 

-t— 
41) 

-t- -+- •+• --t- H 
60     SO      100     120    I4(i 

Figure 1.34. Cumulative Distributions of Time Between Upcrossings for Levels of 4.75 m and 3 m 

Another important result shown in Figure 1.34 is a rejection of the exponential 
distribution for the level of 4.75 m. The rejection means that, according to K-S lest, the 
boundary of applicability of the exponential distribution is somewhere between the levels 
of 5 m and 4.75 m. This is in agreement with the previous conclusion that the levels 5.0 
to 5.75 m are not very far from that boundary; so the sensitivity of Pearson chi-square test 
to the bin width may be giving a hint that the boundary of applicability is somewhere 
near. 

1.3.5.   Direct Test of Applicability of Poisson Flow 

The CDF formula (1.122) in combination with a K-S test seems to be a robust 
technique for checking the applicability of the exponential distribution and Poisson flow. 
However, if the parameter of the distribution is a statistical estimate, the K-S test may 
overestimate the probability that the difference between the observed data and fitted 
curve is caused by random reasons. The Pearson chi-square test allows a penalty to be 
introduced for the statistical estimate by reducing the degrees of freedom by one, and is 
therefore preferable. 
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The applicability of Poisson flow can be judged directly by calculating a 
histogram of the random number of upcrossings observed during a given time and then 
checking if the Poisson distribution fits the observed data. The goodness-of-fit then can 
be judged with the Pearson chi-square test. 

Formula (1.30) gives the expression for the Poisson distribution in the form of the 
probability mass function (PMF), as the number of upcrossing is an integer figure: 

PT(k) = ^^—e\p{-XTk) (1.131) 
k\ 

Here X is the rate of events that is estimated statistically, but is also known 
theoretically for the considered example, k is the number of upcrossings observed during 
time Tk . 

To formulate the procedure, time 7* needs to be chosen. The record length seems 
to be the natural choice; however, this limits the size of the sample to the number of 
records. This sample size may be not sufficient even for the considered numerical 
example with 200 records. If this technique is to be applied for a model test, then a 
smaller window has to be introduced, as there may be few records. 

Consider a size of sample /V* that is the total number of time windows. 
nNRAt 

#*= —z— (1.132) 
* k 

Here NR is s number of records, n is a number of points in each record. At is the time 
step. The duration of time window can be conveniently presented as a fraction of the 
duration of the record, or as the number of windows per record. 

typ=— (1.133) 

One of the properties of Poisson distribution is the mean value numerically equals the 
variance: 

mk=Vk=\Tk (1.134) 
Table 1 and Table 2 contain the ratio of estimates of mean value and variance. The mean 
value and variance of the Poisson distribution can be statistically estimated. 

1    v' 1      v* 

Here k, is a number of upcrossings that was observed in the window i. It can be shown 
that: 

ml=XTi (1.136) 
Where A is an estimate of rate of events based on "counting" - the average number of 
upcrossings per unit of time (1.46). For the proof, consider an auxiliary random variable 
U defined at each time step that equals one if there is an upcrossing and zero if there is 
not (1.38). Without a loss of generality, the definition of this auxiliary variable can be 
altered by the introduction of counting of time windows: 
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fl    x,,, <ar\.\- .... > a 
U,,,=\a     ''      . f-WV,;    ./ = ! *„    / = 1 Nr        (1.137) 

(0   Otherwize 

Where Np is a number of points in a window: 

•^r=— (1.138) 
/vtl 

Based on this definition, the number of upcrossings in a window ean be expressed as: 

* ,v, =2X,.> (1-139) 
i=\ 

Then, the estimate of the mean value of the number of upcrossings during the time 
windows yields: 

"t-jfLK =jTW%%ki =TT^S2LU'-'J (U4()) ly
k   (=1 /VH 'VA'  M   H yvir/vs  N   H W 

Taking into account that the two internal sums represent the number of upcrossings 
observed during one record: 

v,    V, 

NL, = 1L1LUU.I (i.i4i) 

Substitution of (1.139) into (1.138) and then using formula (1.45) 

1      & ..       m* 
/;; LNu,=-7T (1-142) 

Here /w*  is a mean value estimate of the auxiliary random variable U.  It is related to the 

estimate of the rate of events with formula (1.46).   Substitution of (1.46) into (1.139) 
yields: 

m,     XT„ 
m"=ir=ir- <M43> 

Here TR is the duration of a record; 

TR=nM (1.144) 

Substituting (1.142) into (1.141) and taking into account (1.129) leads to the expression 
(1.130) and this completes the proof. 

While numerical proximity of estimates of the mean value and variance may be 
used as a qualitative indicator of possible applicability of Poisson flow, a chi-square 
goodness-of-fit test provides a more rigorous technique. As an example. Figure 1.35 
shows details of these results for the level 6.75 m. 
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0.4T OOO   Theoretical mass probability function x:=3.79 d=6 P(x2.d)= 0.704 
OOO   Based on Average Number per Unit of Time x2=2.81 d=5 P[x:.J)= 0.728 
OOO   Based on Average Time between Crossings x"=30.2l d=5 P(x~,d)= 0.000134 

Based on Average Censored Time before I st Crossing x~=6.69 d=5 P(x".</)= 0.245 
Based on Average Unecnsorcd Time before 1st Crossing x:=6.69 d=5 P(x2.cf)= 0.245 

Crossing level 6.75 m 
Total 1421, all 200 records had crossings 
Number of time windows per record N„=5 
Duration of time window r<=360 s 
Volume of sample 1000 
Estimate of mean value mk = 1.421 
Estimate of variance Vk =1.351 
Ratio mk'i Vk'=1.052 

0 1 2 3 4 5 6 

Figure 1.35. Probability Mass Function of the Number of Upcrossings During a Time Window 

As in the previous analysis, five different methods were used to evaluate the 
single parameter of Poisson distribution. The results of a Pearson chi-square goodness- 
of-fit test for all five methods are presented in Figure 1.35. This test did not reject the 
hypothesis for the theoretical distribution, demonstrating correct interpretation of the 
theory and a reasonable choice of parameters. This is consistent with the result in shown 
Figure 1.31. 

The distribution defined using the parameter estimated as the average number of 
upcrossings per unit of time was not rejecting either, confirming the robustness and 
reliability of the "counting" method. This is consistent with the results shown in Figure 
1.25, where the "counting" method produced the number closest to the correct answer 
known from theory. 

The chi-squared goodness-of-fit test rejected the distribution based on average 
time between crossings, most likely because of insufficient record length. This effect can 
be seen in both Figure 1.24 and Figure 1.25. 

As all the records had at least one crossing, the methods based on uncensored and 
censored mean time before the first upcrossing produced identical results and were not 
rejected. These results are generally consistent with the previous analysis, see Figure 
1.25. 

To complete the formulation of the procedure, the size of the time window 7) has 
to be chosen. As the number of upcrossings is an integer, the width of the histogram bin 
is one and the number of bins, Nmax, is defined by a maximum number of upcrossings 
observed during a time window. 

Obviously, A/max is expected to be larger for larger values of 7*. Therefore, taking 
into account (1.129), Nmax is expected to be larger for smaller sample size AT*. Naturally, 
the constant duration of the time window for different levels of crossings makes a very 
obscure histogram as the decrease of sample size leads to a large number of bins. 

Therefore, it makes sense to keep A/max relatively constant by adjusting the 
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duration of time window. This leads to an increase of hits in each bin. once the sample 
size grows, which seems more natural. The number of windows per record can be chosen 
to satisfy a condition for a constant number of bins, say: 

tf. 7 (1  145) 
If condition (1.143) could not be met, especially for a small number of crossings, 

the number of windows yielding Nmax closest to 7 is chosen. If there are several window 
sizes that satisfy (1.143), the largest one is chosen. Deviations from this rule should be 
especially noted and commented. 

It is known that results of Pearson chi-square goodness-of-fit-test may be 
sensitive to the number of bins. For analysis of time intervals before and between the 
upcrossings, the formula for the width of a bin (1.110) was used. The condition (1.143) 
used to size the histogram is somewhat arbitrary; therefore a sensitivity study was carried 
out. The level is 6.75 m. This crossing level was chosen because there are enough 
upcrossings (1421) and the tests carried out previously did not reject the hypothesis of 
Poisson flow. The windows size was changed systematically and the results are 
summarized in Table I. 

Table 1. Sensitivity to Time Window Size for the Crossing level of 6.75 m 

> (C a? E  "•> 5  N 
C/3    * 

- 

Results 1 'earson chi -square j. oodness-of-ftt test for distribut on baset on: 
Theory Counting Time between 

crossings 
Time before the 

Is' crossing 

X" P(r.<f) X" Ar\</> X" P(X'.cf) X" f\rM) 
1 1X00 14 200 1.76 23.98 0.0313 24.14 0.0195 42.44 2.8IE-5 25.53 0 0125 

2 900 10 400 1.26 16.81 0.0518 16.33 0.0378 39.15 4.61 E-6 19.05 0 0146 

3 (.0(1 s HW 1.11 6.88 0.441 6.83 0.336 29.84 4.2IE-5 9 00 0 1737 

4 450 7 800 1.05 1.81 0.936 1.06 0.957 27.34 4.9E-5 4.51 0478 

5 360 7 1000 1.05 3.8 0.704 2.82 0.728 30.21 1.34E-5 6.69 0.245 

6 300 6 1200 1.03 3.48 0.627 2.68 0.613 29.46 6.31 E-6 6.26 0.181 

7 257 6 1400 1.03 1.32 0.933 0.20 0.995 28.4 1.04E-5 436 (    \U) 

X 225 6 1600 1.01 5.46 0.363 4.44 0.349 32.79 1.32E-6 8.47 0.0759 

9 200 6 1800 1.02 2.02 0.847 0.71 0.950 29.91 5.11 E-6 5.22 0266 

10 180 5 2000 0.99 3.26 0.515 2.3 0.513 30.59 I 04E-6 6.25 0 100 

II 163.5 6 2200 1.00 2.74 0.741 1.44 0.838 30.92 3.18E-6 5.96 0.202 

12 150 5 2400 0.97 6.74 0.150 6.04 0.110 r, si 2.I7E-7 9.59 0 0224 

13 138.5 5 2600 1.00 6.09 0.192 5.00 0.172 33.74 2.25E-7 9.18 0.027 

14 128.5 5 2800 0.97 6.84 0.145 5.63 0.131 35.47 9.68E-8 10.07 0.018 

15 120 5 3000 0.99 5.81 0.214 4.76 0.190 33.58 2.43E-7 8.89 0 0308 

20 90 5 4000 0.97 6.12 0.191 4.81 0.186 34.91 I.27E-7 9.41 0 0243 

25 72 5 5000 0.95 9.93 0.0416 8.78 0.0324 38.76 I.95E-8 13.17 429E-3 

30 60 4 6000 0.97 5.18 0.159 4.07 0.131 33.27 5.97E-8 8.32 0 0156 

40 45 4 8000 0.98 8.92 0.0304 7.87 0.0196 36.73 I.06E-8 12.01 2.47E-3 
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50 36 4 10000 0.98 4.28 0.233 2.92 0.232 32.99 6.85E-8 7.60 0.0223 

The results of testing four distributions are placed into Table 1. All the records 
did have at least one upcrossing, so there is no difference between censored and 
uncensored data for the mean time before the first upcrossing. 

The hypothesis of a Poisson distribution was not rejected for the theoretical 
parameter for a continuous range from 2 to 15 widows per record. There were only three 
window sizes for which the probability of a good fit was less than the significance level 
of 5% (1, 25 and 40 windows per record). However, even for these cases, the probability 
did not go below 3%. The theoretical criterion for any goodness-of-fit test is just a 
finiteness of the probability that the difference between the observed data and hypothesis 
is caused by random reasons. Therefore, variation of these probabilities from 93% to 3% 
does not necessarily constitute sensitivity. It does not change the outcome that the 
hypothesis is not rejected. Therefore, the sensitivity to windows size is very small when 
using a theoretical parameter. 

A similar conclusion can be made on the distributions based on counting and time 
between upcrossings. The outcome of goodness-of-fit analysis does not change 
significantly with changing window size. 

The situation is less stable for the distribution based on time before the first 
upcrossing. The instability can be explained by the fact that this estimate uses less 
statistical information then the others, which is reflected in wider confidence intervals, 
see Figure 1.25. 

Once insensitivity to window size has been demonstrated, the next objective is to 
see how this method behaves when the assumption of Poisson flow is no longer 
applicable. 

Table 2 contains results of systematic calculations for different crossing 
thresholds. The table includes results of a chi-square test computed five different ways: 
theoretical (1.81), statistical, based on counting upcrossings (1.46), statistical, based on 
mean time between upcrossings (1.96), statistical, based uncensored mean time before the 
first upcrossing (1.100) and statistical, based on censored mean time before the first 
upcrossing (1.103). 

Results for both the theoretical distribution and the distribution based on counting 
indicate the applicability of Poisson flow above the level of 6 m. Levels 5.75 m and 5.5 m 
show some sensitivity to windows size (see Table 3 for the level 5.75 m). The area of 
sensitivity to window size generally corresponds to the area of sensitivity to bin size, see 
Figure 1.26 and Figure 1.27. It seems plausible that such "grey" areas are indicators that 
the independence of upcrossings is about to be violated and Poisson flow will become 
inapplicable soon (or is inapplicable already). The inapplicability of Poisson flow is 
indicated consistently for all the levels below 5.5 m. The boundary between applicability 
and inapplicability determined by this method is a little higher than one evaluated using 
the K-S test (between 5 m and 4.75 m). 

The distribution based on time between upcrossings was rejected for all the levels. 
The sample of time intervals between the crossings did not produce representative 
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statistical estimates for the accepted calculation parameters (number and length of record, 
time step, etc.). As it can be seen form Figure 1.9. Figure 1.22, and Figure 1.25, the 
length of the record was too small to estimate the rate of events correctly for the levels of 
9 m, 7.5 m and 6.75 m, respectively. As a result, a Poisson distribution based on this 
estimate was rejected. The length of records seems to be barely enough for the level of 5 
m, see Figure 1.8, but this level was too low to assure independence of upcrossing. and as 
a result Poisson flow was not applicable and the distribution was rejected again. 

Table 2. Evaluation of applicability of Poisson flow 
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Pearson chi-square test •/'  PK\H 

theory count Time 
between 

Time 
before 

censored 
time 
before 

11 10 849 849 35000 362 589 1 1 1.05 2 0.097 
0.76 

- - - - 

10 58 894 925 5918 482 435 0.98 1 1.13 3 5.46 
0.065 

0.8 
0.37 

587 
0 

535 
0 

0.7 
0.4 

9 152 726 801 2244 389 320 0.996 1 1.08 5 2.34 
0.67 

2.26 
0.52 

409 
0 

299 
0 

2.31 
0.51 

8 425 502 582 750 414 193 0.54 1 1.37 7 7.23 
0.3 

7.23 
0.2 

124 
0 

55 
9e-Il 

10 
0.07 

7.5 721 367 414 451 340 133 0.735 2 1.08 8 2.56 
0.92 

2.24 
0.89 

70 
3e-l3 

25.6 
.0002 

8.78 
0.18 

7 1140 263 292 292 254 85 0.78 4 1.05 7 1.65 
0.95 

0.72 
0.98 

35 
l.2e-6 

6.78 
0.23 

6.78 
0.23 

6.75 1421 219 239 239 210 65 0.83 5 1.05 7 3.8 
0.7 

2.82 
0.73 

30.2 
l.3e-5 

6.69 
0.25 

6.69 
0.25 

6.5 1780 179 186 186 173 50 0.19 9 1.02 7 4.0 
0.67 

3.44 
0.63 

28.3 
3.2e-5 

15.3 
.009 

15.3 
.009 

6.25 2195 149 154 154 145 39 0.27 11 .997 7 4.84 
0.56 

4.56 
0.47 

22.6 
40e-4 

12.6 
.027 

12.6 
.027 

6 2684 124 121 121 121 31 0.48 13 1.04 7 3.57 
0.73 

3.42 
0.63 

17.3 
.0043 

28.2 
3. e-4 

28.2 

5.75 3269 103 100 100 101 24 0.58 13* 1.08 7 ')N4 

0.13 
9.88 
0.08 

19.8 
.001 

33.8 
2.7c-h 

33.8 
2.7e-6 

5.5 2840 89 86 86 97 19.5 0.64 15* 1.07 7 10.25 
0.11 

9.47 
0.09 

17.3 
.0036 

34.6 
1,8e-4 

34.6 
1 8e-6 

5.25 4597 75 71 71 73 15.3 0.82 19 111 7 32.5 
1 .Oe-5 

33 
.Ve-5 

36.5 
7.5e-h 

60.8 
g.e-12 

60.8 
8e-l2 

5 5407 64 60 60 61 12.2 0.23 21 1.17 7 "72 
1.3e-8 

73 
2e-14 

73 
2e-l4 

101 
0 

101 
0 

4.75 6393 54.7 53 53 50 9.5 00015 22 1.22 7 88 
0 

88 
0 

88 
0 

99 
0 

99 
0 

3 15201 23.5 17.1 17.1 15.4 2.17 0 32 2.27 7 1437 
(i 

1446 
0 

1435 
t) 

2340 
0 

2340 
1) 

1 22543 14.0 7.75 7.75 4.22 0.5 0 39 6.71 7 6996 
0 

6998 
0 

6991 
0 

21693 
0 

21693 
0 

* V„ was manually chosen to sec if the hypothesis ean pass. Possible sensitivity to number of windows 

The distribution based on uncensored time before the first upcrossing was not 
rejected for the level of 7 m and 6.75 m. It was rejected for the levels of 6.5 m and 6 m, 
probably because of insufficient accuracy of the estimate. For the level of 5.75 m and 
below, Poisson flow may be already inapplicable.    For the levels above of 7 m the 
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hypothesis was rejected, because of bias in the estimate caused by insufficient length of 
record, see Figure 1.9 and Figure 1.22. 

The distribution based on censored mean time before the first upcrossing, 
however, is not rejected up to the level of 10 m. This is not surprising as the censoring 
procedure takes care of bias in the parameter estimate, see Figure 1.8 and Figure 1.22. 
The rejection of the level below 6 m is caused by the same reasons as the rejection of the 
distribution based on the uncensored estimate. 

Table 3. Sensitivity to Time Window Size for the C rossing level 5.75 m 

f^ 
C 

3.2 
1/5    w> 

Results Pearson chi -square goodness-of-fit test for distribut on basec on 
Theory Counting Time between 

crossings 
Time before the 

1   crossing 

X" i\rJ) X' Pir.'D X^ P(X\cJ) X~ P(y.\J) 

1 1800 27 200 2.29 55.07 7.44E-04 55.08 4.81E-04 64.55 2.40E-05 77.61 2.69E-07 

2 900 16 400 1.43 22.45 9.65E-02 22.48 6.43E-02 31.01 5.50E-03 43.29 7.70E-05 

3 600 14 600 1.34 25.1 2.24E-02 25.14 1.42E-02 33.25 8.86E-04 45.51 8.43E-06 

4 450 II 800 1.13 9.74 4.63E-0I 9.8 3.67E-0I 17.99 4.00E-02 30.9 3.08E-04 

5 360 II 1000 1  14 16.82 7.86E-02 16.84 5.13E-02 26.74 1 541 -03 40.39 6.45E-06 

6 300 10 1200 1.15 21.05 1.24E-02 21.08 6.93E-03 30.41 1.79E-04 43.75 6.33E-07 

7 257 11 1400 1.07 12.54 2.50E-0I 12.6 1.8IE-0I 21.56 1.00E-02 <5.45 4.96E-05 

8 225 9 1600 1.06 5.1 7.47E-01 5.11 6.46E-01 16.16 2.00E-02 30.79 6.78E-05 

9 200 9 1800 1.11 11.61 I.70E-01 11.64 1.13E-01 21.31 3.34E-03 35.07 1.09E-05 

10 180 8 2000 1.07 6.65 4.I.6E-01 6.68 3.52E-01 0.3519 8.31E-03 31.66 I.90E-05 

1 1 163.5 7 2200 1.05 5.05 5.38E-01 5.0<> 4.05E-01 14.67 1 .OOE-02 28.62 2 -51-05 

12 150 8 2400 1.06 11.05 1.36E-0I 11.09 8.57E-02 20.98 I.85E-03 35.08 4.16E-06 

13 138.5 7 2600 1.08 9.85 I.31E-0I 9.88 7.87E-02 19.8 1 36E-03 33.76 2.65E-06 

14 128.5 8 2800 1.06 11.18 I.31E-0I 1 1.23 8.16E-02 20.84 1.96E-03 34.84 4.64E-06 

15 120 6 3000 1.05 5.78 3.29E-01 5.82 2.I3E-01 15.53 3.72E-03 29.53 6.09E-06 

16 112.5 7 3200 1.03 5.32 5.03E-01 5.34 3.76E-0I 16.76 4.98E-03 31.74 6.69E-06 

17 106 7 3400 1.06 13.81 3.18E-02 13.83 1.67E-02 24.57 1.69E-04 39.08 2.29E-07 

18 100 6 3600 1.03 17.93 3.04E-03 17.97 1.25E-03 27.86 1.33E-05 42.17 1.54E-08 

19 94.5 7 3800 1.05 19.52 3.36E-03 19.58 1.50E-03 28.63 2.74E-05 42.44 4.79E-08 

20 90 6 4O0O 1.01 7.45 1.89E-0I 7.47 1.13E-01 18.65 9.21E-04 33.65 8.7SE-07 

21 85.5 6 4200 1.06 24.55 1.70E-04 24.62 6.0IE-05 32.96 1.22E-06 46.31 2.I3E-09 

22 82 6 4400 1.03 21.9 5.46E-04 21.93 2.07E-04 32.84 1.29E-06 47.69 1.09E-09 

23 78.5 6 4600 1.03 6.92 2.27E-0I 6.92 1.40E-01 18.98 7.94E-04 34.32 6.40E-07 

24 75 6 4800 1.05 12.58 2.77E-02 12.61 1.33E-02 22.73 1.43E-04 36.96 1.83E-07 

25 72 6 5000 1.02 13.59 I.85E-02 13.61 8.63E-03 24.31 6.91E-05 39.05 6.79E-08 

30 60 5 6000 1.03 8.71 6.87E-02 8.75 3.28E-02 18.69 3.17E-04 32.9 3.37E-07 

40 45 4 8000 1.04 3.79 2.85E-01 3.85 1.46E-01 12.47 1.96E-03 25.9 2.38E-06 

50 36 4 10000 1.04 17.53 5.51E-04 17.6 1.5IE-04 25.51 2.89E-06 38.66 4.03E-09 
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1.4. Summary 
The probability of a large roll event (partial stability failure) is related to exposure 

time. This probability grows with time. The time before a large roll event is a random 
number. 

If sequential large roll events can be considered independent, the number of such 
events during a given time follows a Poisson distribution and the time before a large roll 
event (or between them) has an exponential distribution. 

Both Poisson and exponential distributions share a single parameter that 
completely defines both distributions. This parameter is the rate of events (average 
number of events per unit of time) and is equal to the inverse the mean time before or 
between the events. 

If the distributions of instantaneous roll angle and roll rate, are known, the rate of 
events can be found using upcrossing theory. 

Large-amplitude roll motion is the response of a dynamical system with 
significant nonlinearity. Even if the excitation of such a system has a normal distribution, 
the response can be significantly non-Gaussian. As reliable modeling of the distribution 
of roll angle may be difficult, statistical evaluation of the rate of events is of practical 
interest. 

Three methods of statistical evaluation of the rate of events were considered. The 
first method is based on counting the upcrossing events and estimating an average 
number of events per unit of time. The second method was based on average time before 
the first event occurs, while the third method involved time estimation of average time 
between events. Evaluation of the confidence interval was included with all three 
methods. 

A numerical example was formulated to examine how these methods work. 
Simulated wave elevations were chosen to serve as the data set for this example. Their 
distribution is known to be normal. Therefore, the theoretical value for the rate of events 
or upcrossing rate is available. These methods can therefore be judged based on how 
close the results come to the theoretical answer. 

A different degree of rarity of the upcrossing events was modeled by varying the 
crossing level; high crossing level leads to fewer upcrossings, so the events become rarer 
and the methods can be tested for different conditions. 

It was found that the methods based on time before and between the events may 
be biased due to insufficient record length. The method based on counting does not have 
this problem. This bias for the method based on average time before the first upcrossing 
can be corrected by censoring. 

The counting method was found to be preferable as it not biased and has less 
statistical uncertainty in comparison with the method based on censored mean value of 
time before the first event. 

Several  methods were considered for checking if upcrossing events  follow 
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Poisson flow and, therefore, if the exponential distribution can be used to compute 
probability of at least one event during given exposure time. All of these methods used a 
goodness-of-fit test to check if the distribution of the observed data follows either an 
exponential or Poisson distributions. These methods were: 

1. Check if statistical PDF of time before the first event is exponential using Pearson 
chi-square goodness-of-fit test; 

2. Check if statistical PDF of time between the events is exponential using Pearson 
chi-square goodness-of-fit test; 

3. Check if statistical CDF of time between the events is exponential using 
Kolmogorov-Smirnov goodness-of-fit test; 

4. Check if statistical probability mass function (PMF) of number of events during 
given time follows Poisson distribution. 

The numerical example was also used to test all these methods. The theoretical 
distribution available for the numerical example was used to check if the calculation 
parameters (number and length of record, time step, etc.) were selected correctly so the 
results can be decisive. 

The methods 2, 3 and 4 were found to be able correctly detect violation of Poisson 
flow caused by dependence of the upcrossing events. However, method 2 uses a biased 
distribution and method 3 may overestimate the goodness-of-fit if the statistical estimates 
were used for parameters of the distribution. Method 4 is therefore preferable. 

In conclusion, two techniques are chosen for the procedure: 

• The rate of events is to be estimated as an average number of upcrossings per unit 
of time - the "counting" method 

• The applicability of Poisson flow is to be checked using a Pearson chi-square 
goodness-of-fit test applied to the statistical PMF of the number of upcrossings 
during a given time. 
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2. Extreme Value Theory 
2.1.Background 

Gumbel (1958) formulated Extreme Value Theory (EVT) in its modern form. One 
of the immediate applications of EVT was the prediction of extreme flooding based on 
multi-year observations. There is a series of measurements of the water level in a river 
observed during a year. Taking the largest measurement for each year a series of extreme 
values is created. The basic question posed was then, "What would be the level for a 
one-hundred-year flood?" 

Extreme value theory looks at another aspect of the problem of rare events While 
the Poisson distribution (considered in detail in the previous section) answers how many 
rare events could occur in a given time period. EVT looks into the distribution of the 
magnitude of the rare events. 

The concept of order statistics is another mathematical tool that is related to 
extreme value theory. Order statistics are reviewd briefly in the next subsection. 

2.1.1.   Distribution of Order Statistics 

As order statistics can be applied to both roll angle and time before or between 
large roll events, the following text uses the generic nomenclature A'for observations of a 
continuous random variable .v. The following represents a generic derivation that could 
be found in a number of statistical textbooks. Similar to derivations in the previous 
section, it has been placed here for the sake of completeness. 

Consider a series of n independent observations of a continuous random variable 
X\. AS,..., X„. The largest (or the smallest) observation out of n is also the random variable 
with a distribution that is different from the distribution of .v. 

The set of values X\, A':,..., X„ is sorted (ordered) from smallest to largest, so that 
A',!, is the smallest observed value while A,,,, is the largest. The value A,*,, which is A-th 
from the smallest, is defined as the //''-order statistic. The objective is to find the PDF of 
A-order statistic /IJ()(.Y). 

The PDF is, by definition, the derivative of the CDF: 

dFU](x) 

ax 

The cumulative distribution function (CDF) of the A';'-order statistic is defined as 
the probability that the encountered value of the ft! -order statistic is less than an 
argument of this function. 

/-;;,(.v)=P(Aa,<x) (2.2) 

However, if 
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\X{k+i)<,x\=>\xm<x\ (2.3) 

Because values X{i) are sorted in ascending order (due to definition of order statistic), so 

*(*><*<*•!> (2.4) 

The converse is not true: if X<j$£x it not necessarily mean that it is also larger 
than X,k, i). The following expression is biconditional, but it is for A' = n - 1 only 

{Xw£x\\j\Xw<x<Xin)\^\x(k)<x\   ;   k = n-\ (2.5) 

Formula (2.5) can be generalized for any value of A- 

foo <x}u[{j{X{l)<x<Xa+n}\<>{xik)Zx} (2.6) 
J=k 

Formula (2.6) expresses all possible ways how the condition X{k)<x can be fulfilled. 

The CDF ofA-order statistics can be expressed by substitution of (2.6) into (2.2) 

F(t)w=4)^)=/ffc)<x)u[ife<K^1)) (2.7) 

Equation (2.7) is a probability of a union of random events where the 
corresponding conditions are true. As it can be clearly seen from the equation (2.7) all the 
conditions are incompatible and the probability of simultaneously occurring random 
events is zero. As it is known, the probability of the union of incompatible events equals 
just a sum of probabilities: 

F(k)(x) = p{xw£x)+fdP{x{l)<x<XlM)) (2.8) 

Consider the first component P(X{n)<x). It is a probability that the argument is 
greater than the w-order statistic, which is the largest observed value. As there were n 
observations total, the condition P(X<x) has to be satisfied n times: 

p(XUl)<x)=(P{X<x))"={F{x))" (2.9) 

The component under the symbol of summation in expression (2.8) represents a 
probability that x will exceed a value that has been seen in i observations, but is less than 
any of the values encountered in rt-i observations: 
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p(Xu)<x<XuJ=C(nj){P(X<x))'(P(X>x))" ' (2.10) 

Here C(n, /') stands for a number of distinct variants where x could exceed values 
that have been seen in i observations, but not exceed the rest n-i observations. It is a 
number of combinations of how i values can be chosen out of/?. 

/!(/?-/)! 

It is not difficult to recognize that expression (2.10) is, in fact the binomial distribution: 

KkI)<x<jf(/+I)))=c(»,opV-' 2 

p = P(X<x)    ;    q = P(X >x) = \-P(X <x) = \-p 

By definition, it is the CDF of random variable .v, 

p = P(X <x)=F(x) (2 13) 

Substitution of formulae (2.9), (2.12) and (2.13) into the expression (2.8) yields: 

h]il(x) = {F(x))"+^C(nj)(F(x))(\-F(x))" ' (2 14) 

The first term in the expression (2.14) can be presented in the following form: 

(F(x))" =C(n,n){F(x))n(\-F{x))"=C(nj){F(x)),(\-F(x))" (2 15) 

Then, it can be incorporated into the sum. This leads to the following expression for CDF 
of border statistic: 

f-'uM) = ^C(nti){F(x)J(l-F(x)y • (2 16) 

Substitution of (2.16) into (2.1) leads to the PDF of border. Derivative of the sum, 

fat(x) = -^fc(nJ){F(x))'(\-F(x))'-' 
ax~~r 

(2 17) 
= f^rC(nJ){F(x))'(\-F(x))"' 

Zfdx 

Appling the product rule of differentiation: 



faM) = ^C(nj{(\-F(x)r'MF(x)))+{F(x))l4-(0-f'(x)r') 
V ax ax i=k 

(2.18) 

Considering each of the derivatives, using the chain rule of differentiation: 

^({F(x))')=i(F(x)r-f(x) 
ax 

^-((l-F(.v))"')=(«-/)-(l-H.v))""-(-/(.v)) 
ax 

(2.19) 

Substitution of (2.19) into (2.18) yields: 

fat(x) = f(x)fjC{nJ)(i(F(x)T\\-F{x)y'-'-(n-i){F{x))(\-F(x))"-'-1) (2.20) 
, * 

Expand the formula (2.11) for a number of combinations C(iu /') and consider each 
component of (2.20) separately: 

C(n,i)i(nx)J \\-F(x)y ' =——i{F(x)) '(1-FW)" ' = 
/!(/7-/)! 

n! 
(/-l)!(/7-/)! 

(n-\)\n 

{F(x))'\\-F(x)yl = 

(F(.r))"(l-F(x)r' = 
(/-l)!((w-l)-(/-l))! 

C(n-lJ-\)n{F(x))'\\-F(x)y 

(2.21) 

C(nJ)(n-i){F(x))(\-F(x)y ' ' = —^— (n-i){F(x))'(\ - F(x))" 
ii(n-iy. 

n[       (F(x))'(l-F(x))"-M = 

{F(x))i(\-F(x))n-'-i = 

-;-i 

(/?-!)!« 

fl((»-l)-i)l 

= C(/7-l,/)/7(F(.v))'(l-F(.v)r" 

Substitution of (2.21) and (2.22) back into (2.20) yields: 

(2.22) 
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(    n 

flk){x) = nf(x) 
\i=k 

XC(/7-l,/-l)(F(.v))"(l-F(.v))"'- 

£c>-l,/)(F(.Y))'(l-F(.Y)r 
M 

(2 23) 

(224) 

Consider the first sum in the expression (2.23); its expansion looks like: 

£c(/7-l./-l)(F(.v))"(l-F(.v))"' = 

= C{n-l,k-l){F(x))k \\-F(x))"k + 

+ C(n-lk){F(x)y(\-F(x))"k ' + 

+ C(/7-KA + l)(F(.v))AI(l-F(.v))"A : + 

+ ...+ 

+ C(n-\,n-\)(F(x))"\\-F(x))1' 

Consider the first sum in the expression (2.24); its expansion looks like: 

JC(»-l,,)(f(.T))'(l-F(.v))"" = 

+ C(n-lk){F(x)Y(\-F(x))"k ' + 

+ C(n-\.k + \)(F(x))'\\-F(x))"k 2 + 

+ C(n-lk + 2)(F(x)Y'\\- F(x))" k 3 + 

+ .„+ 

+ C(77-1,A7)(F(.V))"(1-F(.V))1 

Note that the second term in the expanded sum (2.24) is identical to the first term 
in the expanded sum (2.25), while the third term of (2.24) is equal to the second term of 
(2.25) and so forth. As the expression (2.23) is a difference between sum (2.24) and 
(2.25), only the first term of (2.24) and the last term of (2.25) survive. 

(2 25) 

./(<1(.v) = /7/(.v)(c(77-l.A-l)(f(.v)); '(l-F(.v))" * 

-C(n-l,n)(F(x))"(\-F{x))]) 
(2 26) 

Consider the second term in the equation (2.26), the coefficient there expresses the 
number 
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C(/7-l,/7) = 0 (2.27) 

As a result the second term in (2.26) equals zero. Finally the PDF of the A-order statistic 
is: 

fik)(x) = f(x) 
(k-\)\(n-k)\ 

{F(x))k\\-F(x))"k 
(2.28) 

2.7.2.   Extreme Value Distributions 

In general, the distribution of extreme values is a particular case of distribution of 
order statistics (Gumbel, 1958). 

Consider a set of independent identically distributed random values {x\,...,xn) the 
limiting cumulative distribution has been shown to be of the form: (Davison, 2003): 

P(x>x,lt))=FCEy(xy=exp 
'      x-Q) 

1+7  
a   ) 

i A 

(2.29) 

Here 0 is a location parameter, a is a scale parameter and y is a shape parameter. 

This is the Generalized Extreme Value (GEV) distribution and holds for the 
maxima of observed values of x, regardless of how x is distributed itself. The parameter y 
is often referred to as the extreme value index and controls the behavior of the upper tail 
of the distribution. A trio of extreme value distributions arises as special cases of the 
GEV distribution depending on the value of y. These distributions are the Gumbel, 
Freschet, and Weibull distributions. 

A Gumbel or Type I distribution arises when y equals or approaches zero: 

Fw(.r) = exp exp 
x-Q 

a   J 
(2.30) 

For the positive values of the shape parameter y, a Freschet or Type 11 distribution arises: 

0 .v<9 

M*) = exp 
x-v ' 

a   ) 
.v>e (2.31) 

Here A- is a positive shape parameter. 
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0 
< . 

t 
( x-^ 

A     \ 

1- -exp — 

\ {   a   ; ) 

.v<e 

*•.*<*) Hi-«n-ffz°l     x>9 (2-32) 

Here A' is a positive shape parameter. 

2.1.3.   Application Extreme Value Distributions: State-of-the-Art Review 

Extreme Value Theory can be found in many applications in Naval Architecture. 
A typical application is estimating the maximum lifetime wave loads on a ship hull using 
Weibull distribution. McTaggart pioneered the application of extreme value distributions 
for the problem of assessing the dynamic stability of ships. 

McTaggart (2000, 2000a, 2000b), McTaggart & de Kat (2000) focused on fitting 
extreme value distributions to roll maxima for predicting the hourly capsize risk of a 
naval combatant in a stationary seaway. He investigated the use of the several 
distributions for fitting the roll maxima generated from simulations using the time 
domain, ship motions code FREDYN. The following extreme distributions were 
investigated: 

• Generalized Extreme Value 
• Freschet, referred to as a Type II Maximum Distribution 
• Gumbel 
• Gumbel Limited Range (GLR) 
• Transformed Gumbel 

McTaggart found that is was often difficult to obtain a satisfactory distribution fit 
to the roll maxima. Since the prediction of capsize risk was the goal, the Gumbel Limited 
Range (GLR) fitting technique was developed. The distribution fit used a least squares 
method to the empirical CDF which he computed as: 

Fi*~t0=T7] (233) 

In applying the least squares method, only the error in the upper portion of the sample of 
roll maxima is considered. Through this method, the hope was that this partial 
distribution fit was useful for extrapolating to the roll angle that was considered for 
capsize. 

The problem of poor distribution fit that McTaggart was attempting to solve with 
the Limited Range approach caused the extreme non-linearity of the motion of a ship 
around the peak of the ship's righting arm (stiffness) curve. The ship starts responding 
differently once the roll angle approaches or exceeds this value (to complicate matters, 
this point actually fluctuates in a seaway). This change in system dynamics calls into 
question one of the fundamental assumptions of Extreme Value Theory, that the data is 
Independent and Identically Distributed (1ID). If a sample of roll maxima has values 
larger and smaller than the roll angle where the righting arm peaks, the data may not be 
identically distributed.  By considering the upper portion of the data for the least squares 
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fitting, the Limited Range approach attempts to deal with this issue; however, the 
empirical CDF being fit still contains all of the data. 

In the application of the above approach, generally 30-minute simulation runs 
were executed. The desired output from the process was hourly capsize risk. The 
following equation is used to adjust the exposure period of the results: 

&.0(*)=I-[I-&A(*)FDS (2.34) 

where Q\.D is the exceedance probability (referred to as the Quantile function or inverse 
CDF) of X in duration D. Ds is the duration of the simulation. 

2.1.4.   Method of Maximum Likelihood 

The extreme value distributions considered above have two or three parameters. 
Fitting the distribution to the collected data requires finding these parameters. The idea of 
maximum likelihood method is to find such values of parameters that are "more likely" to 
fit the data. 

What is "more likely"? The data points that have been observed are the facts. At 
the same time they are instances of a random variable. Just because they were observed, 
these particular values are more likely than others. That means that the probability of 
observing these particular values reaches maximum when the correct parameters are used 
for distribution. 

To illustrate application of this principle, consider a set of n identically distributed 
independent random variables. .r„ /=1,2,.., n. Assume the normal distribution for the first 
example: 

/(*) = 
1 

2na 
exp (*-M> 

2G: (2.35) 

Where u stands for the mean value and a is standard deviation. As all the random 
variables from the set Xj, /=1,2,.., n are independent of their joint distribution and is a 
product of marginal distributions (2.35): 

"      I 
/(X|,..,xB) = J|-_-exp 

M v2rca 
U,-u): 

2a2 (2.36) 

It is not difficult to see that: 

(   i   y 
/(*„..,*„) = 

27i cr 

(     \    " ^ exP -rrZfe-rf I   2CT   5 
(2.37) 

The joint distribution (2.37) depends on two parameters: the mean value u and 
the standard deviation a. The objective is to find such estimates for u and a that 
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maximizes the joint distribution /(XI,...Y„). As x\,..jcn are random numbers the result of 
maximization also is a random number. Therefore the estimate is actually a result of 
averaging: 

(n\cr*)= E(\i,a)=E axgmax(f(xx,..,xnj) 
V        M-" 

(238) 

Here £(..) is an averaging operator. 

The instances of random variable .Y|,..,.Y„ are particular numbers, while the 
parameters u and a are unknowns. It is logical to consider (2.37)as a function of the 
parameters: 

f(\x,a) = 
i   V 

2na~ J 
exp -2M5" 

\\ 
(239) 

/ 

The maximum of function (2.39) is to be searched; this function is usually 
referred to as the maximum likelihood estimator: 

(u.CT) = argmax(/(p,a))=argmax(Z.(u,a)) (2 40) 

Here symbol L is used for the maximum likelihood estimator. 

As positions of maxima cannot be affected by monotonic transformations, the same 
values will be obtained from the logarithm of the maximum likelihood estimator: 

(u.,a) = argmax(log(Z.(p.,a))) = argmax(Z.*(u,a)) 
M.0 M." 

(2.41) 

The basis of the logarithm to chose depends on the particular form of the expression. The 
natural logarithm seems to be the most reasonable choice for the formula (2.42): 

/ / 
Z,*(u,a) = ln 

I 

\ 

= ^ln 
2na~ 

\2na- ) 

t      f   n 

exp 
/   n 

la' 
Z(-v,-M): 

V <=\ 

\\\ 

'J (242) 

2a: K-v,-M)2 

Vi=i 

Most likely estimates for the mean value and standard deviation now can be found as: 
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aZ,*(n,g) 

dZ*(p.,a) 

do 

0 

0 

The first equation in the system (2.43) yields: 

ai*(|i,a)__5_|V  f 

du du I 2 2na 

( « 

\z.nu   j 2a-{i Ifc-tf 
f   n 

2a  dut? V'-i 

= 0 

The equation (2.44) is linear and has a unique solution: 

1   " 

I—4> « w 

Taking the average from both sides yields the searched estimate: 

(2.43) 

(2.44) 

(2.45) 

H* =£(ji) = £ 
if If 

V" <=i      J 

(2.46) 

Therefore the observed average represents the most likely estimate for the mean value. 

Consider the second equation of (2.43): 

dL*(\i,a) _ c 

da da 

n 
— in 
2    I2na' 

(   a 

2a~ Efe-tf 
\\ 

V i=l 

£  J_ 
a    a Zk-M)2 = 0 

(2.47) 

Further consideration of (2.47) yields: 

o V i=l 

A 
" ? 1    n 1  " 

i=i 

(2.48) 

To complete the solution of the second equation of (2.43), the solution of the first 
equation (2.45) has to be substituted into (2.48): 
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1 f 2M v; ^: =-Z(-v^^): =_Z*2—X-v<+^: =-Zx<2_2^2+^2 = 

I     " 1     " /* 1     " ^~ 

=-2*xt-il =~2*x;- ~L,X 

(2 49) 

;=1 \" «=i    y 

Standard deviation does not depend on a mean value. Therefore equation (2.49) remains 
valid after the following substitution: 

v = x - u 

y- 

I I 

1 (2 50) 

Expanding the square of a sum in the equation (2.50): 

n \" i       it inn 

•Is,} =-^2>?+2-VlIwL 
M       J «    tl "     M   H 

This leads to the following expression: 

i   /; i    " i    "   " 

Appling averaging to the formula (2.52): 

(2.51) 

(252) 

a*- = £ 
(v, — \ JL \ (       \      "     " 

M 

If     2 

V   "      /=!       / V    ,7     N   /-! 
(2 53) 

As .Y|,...v„  and  corresponding  Vi,..r„  are  independent  random  variables,  the  second 
component in (2.53) represents, in fact, a correlation moment: 

A 

"   .=  /•= 

= 0 (254) 

Continuing consideration of (2.53) leads to: 
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(CT*)
2
=£ 

n-l^„.   ,,    n-      ,    n 
—2>,    =-T-Z^OT)=—5-«^=- "a" (2-55) 

H        / 

Formula (2.55) confirms the well-known fact that the mean value of the 
variance is biased. The estimate with corrected bias is: 

("*):=—rX(*,V)2 (2-56) 
1-1" 

Finally, the maximum likelihood method leads to the conclusion that, for the 
normal distribution the most likely fit is achieved with well-known formulae for 
estimates of mean value and standard deviation. 

2.2. Using Extreme Value Distribution for Evaluation of Upcrossing 
Rate 

2.2.1.   General Approach 

According to the information of the authors, the idea to use extreme value 
distribution for calculation of upcrossing rate belongs to G. Hazen, who formulated this 
idea and demonstrated the method in early 2009. At the moment of writing this report, 
the authors are not aware of any publications of this method by G. Hazen or anybody 
else. 

Consider an extreme value distribution in a form of the cumulative distribution 
function (CDF) fitted over record maxima, provided all the records are of the same 
duration Ts- By the definition of CDF: 

FEV(a) = P(x<a) (2.57) 

The probability of the complement event is: 

P(x >a) = \- P(x < a) = 1 - FEP (a) (2.58) 

This probability can be interpreted as a probability of at least one upcrossing of 
the level a by a process x(t) during time of record 7s. Assuming that the level a is high 
enough to ensure applicability of Poisson flow, this probability can be expressed as: 

P(x>a) = \-exp(-XTs) (2.59) 

The formulae (2.58) and (2.59) allow expressing the rate of upcrossing as: 
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fc = 
\n(Ft:i(a)) 

(2.60) 

2.2.2.   Fitting Extreme Value Distribution 

Following the work of G. Hazen mentioned above, a three-parameter Weibull 
distribution (2.32) was used with a numerieal example described in the previous section. 
This example included 200 records of wave elevations; each record was 30 minutes. 
More details can be found in the subsection 1.2.3. 

The dataset for analysis is formed from the maximum value observed over a 
record or a window of a smaller size. 

T 
T   =    s 1
 ii 

N. 
(2.61) 

The windowing procedure was implemented to provide the ability to control the time of 
exposure. 

.v, =maxfc,J    ./ = ! -^ ;    / = 1, N„ (2.62) 

The shift parameter is found as an observed minimum of the dataset: 

e = min(.v,);    i = ] Nm (2 63) 

Values for scale and shape parameters can be found using the known relations between 
the theoretical mean value mx, theoretical variance \\ , and these parameters. 

/», = af 'i+I 
f 

V. =aT 
(2 64) 

V' 
Theoretical values of the mean and variance are unknown, therefore their estimates are 
used instead: 

m. «w ;=!*,;     K*K 
(=i •N 

(2 65) 
»  ;=i 

Then, the scale parameter a and shape parameter A- can be found numerically 
from the system of equations (2.64). 
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Alternatively these parameters can be evaluated using the method of maximum 
likelihood as described in detail in the previous subsection. The probability density 
function of the Weibull distribution is expressed as: 

/*(*) 

kfx-Q' 
a\   a   , 

exp 

0 
a   ; 

.v>e 

x<0 

(2.66) 

Without  limitation  of generality,  the  maximum  likelihood  method  can  be 
applied for shifted random variable y: 

v = .v-9 

The PDF of the shifted variable can be expressed as: 

(2.67) 

./;,„(v)= a. 

k-i 
k   v 

— I    exp 
( ( x\ k\ 

>>>0 
{   Kaj ) 

0 v<0 

The maximum likelihood estimator L(a, k) can be expressed as (Cohen, 1965): 

(2.68) 

,=i M o.\a j 

M      (   f    \ 
exp 

V \a ) 

i ^ 

) 
(2.69) 

For simplification of further derivations, it is convenient to use the substitution: 

9 = a* (2.70) 

Substitution of (2.70) into (2.69) yields: 

WA^n^-vf'exp (2.71) 

The logarithmic estimator is expressed as: 

Z.*(S,A-) = ln fl^'-P 
( k\\ 

(2.72) 

= mtffi)-nhfa)Hk-l)ttfyi)-rt.yi 
i=\ 9 i i 

Maximization of the estimator (2.72) requires: 
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cL*{&.k) 

dL*(S,k) 
dk 

= 0 

= 0 
(2.73) 

Differentiation in (2.71) leads to the following system of algebraic equations: 

rZ'n(v,)4X.nln(v,) = 0 
" y=i ft   i=l 

(2.74) 

The unknown & can be expressed through the unknown A using the first equation of the 
system (2.74). 

a—I*1 
(2.75) 

Substitution of (2.75) into the second equation of (2.74) excludes & and leads to a 
nonlinear algebraic equation with only one unknown, k: 

l-ZMv,)--^    - = o (2 76) 

;=i 

Equation (2.76) then can be solved with any appropriate numerical method. 

Figure 2.1 shows an example of fitting a Weibull distribution using both the 
moment method ((2.64)-(2.65)) and the method of maximum likelihood ((2.75)-(2.76)). 
These data represent 200 maximum wave elevations observed during each record, so it 
was only one window per record. This figure also shows the results of the Pearson chi- 
square goodness-of-fit test for both methods. As it can be seen, both methods have 
passed. 
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9 10 II 12 13 14 

Figure 2.1. Histogram of Extreme Wave Elevation with W'eibull distribution fitted 

Table 4 shows the results of the goodness-of-fit test for a series of windows 
length. As can be seen from that table, once a window becomes too short the Weibull 
distribution does not fit the data anymore 

Table 4. Results of Pearson chi-square goodness-of-fit test 
,v„. 7",, n Omn d e Method of moments Methods of maximum 

likelihood 

k a X2 P k a X2 P 

1 1800 200 1.01 9 7.164 2.001) 2.173 5.61 0.468 1.76 2.12 9.49 O UN 
2 900 400 1.11 9 6.248 2.277 2.704 9.1318 0.425 2.13 2.671 1 1.3 0.259 
3 600 600 1.17 12 5.579 2.407 2.979 IS.20 0.110 2.304 2.958 18.4 0.105 
4 450 800 1.21 14 5.123 2.481 3.160 38.72 4.03c-4 2.381 3.141 38.2 4.03e-4 
5 360 1000 1.24 16 4.452 2.835 3.637 60.5 4.32e-7 2.703 3.622 54.3 4.68e-6 

2.2.3.   Evaluation of Confidence Intervals for Weibull Distribution 

All three parameters of the Weibull distribution are determined from statistical 
data and, therefore, they are random numbers. This means that the upcrossing rate 
evaluated with en extreme value distribution (2.60) is, indeed, a random number. As with 
any other estimate, the crossing rate (2.58) needs a confidence interval to evaluate the 
statistical uncertainty involved. 

The expression (2.64) relates the estimates of the mean value and variance with 
parameters of Weibull distribution. The confidence interval for these estimates can be 
assessed trivially using conventional assumptions of the normal distribution of the 
estimates of the mean value and variance. Caution has to be exercised, however, when 
applying the normal distribution for the variance estimate, as the variance is a positive 
value, while the normal distribution is supported for negative values as well. 

To determine the distribution for the mean value estimate, two parameters are 
needed - the mean value of the mean value estimate and the variance of the mean value 
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estimate. As the mean value is an unbiased estimate, its mean value is equal to the 
estimate itself: 

V 
m{m\) = m\ = Y\x,;        V(m') = —i- = Vl.v,-ni'f (2 77) 

Then the half-breadth of confidence interval for the mean estimate is: 

£(m]) = KirJV(mx) (2 78) 

The coefficient Kp depends on confidence probability p: 

P = 0.95 ;        Kp = 1.959964 

P = 0.9973;     £p=3.0 
(2 79) 

More details  on  the confidence  interval  can  be  found  in  the previous  subsection 
(formulae (2.54)-(2.58)). 

Finally, the complete estimate for the mean looks like: 

m] = m(jfi*)±e(m*) (2 SO) 

Construction of the confidence interval for the variance estimate involves more 
assumptions. If a random variable would have a normal distribution, then the distribution 
of its variance estimate would follow the chi-square distribution. One of the most 
important qualities of the chi-square distribution is it only supports positive values. This 
corresponds to one of the most basic properties of the variance - it is not negative. The 
PDF of the chi-square distribution is defined by the following formula. 

,/ 

/,:«- — 
1 

(d^ 
2-r - 

\2 

'xW      (   x^ 

2) expb, x*° (2.81) 

The chi-square distribution depends on a single parameter d, which is commonly referred 
to as the "degrees of freedom". If the chi-square distribution is used for construction of 
the confidence interval, the meaning of d is the number of points instances of the 
random variable. 

With an increased number of random values, the chi-square distributions tends 
to a normal distribution; near 30 values, it is almost indistinguishable, see Figure 2.2. The 
reason for the convergence of the two distributions is the Central Limit Theorem, which 
states that the sum of independent, identically distributed random variables, tends to a 
normal distribution with the increase of number of components in the sum. That is why 
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the normal distribution is also used for construction of the confidence interval for the 
variance where the number of points is large. 

At the same time, the normal distribution is supported for negative values as 
well, which, in principle, allows a certain probability for negative variances. However, 
the mean value of a random variable following chi-square distribution equals the number 
of degrees of freedom. Thus with the increase in the number of points,the entire curve 
moves to the right, as it can be clearly seen in Figure 2.2. In a limit, when a number of 
points reaches infinity, the mean value is equal to positive infinity, leaving the probability 
of negative variances essentially zero. Nevertheless, caution has to be exercised while 
using the normal distribution for the confidence interval of variances, especially when the 
number of points is not that large and the desired confidence level is relatively high. 

PDF d=4 PDF 

t    K -^ 

J=8 PDF 
rf=30 

Figure 2.2 Chi-square (red) and normal distribution (blue) 

The main advantage of the normal distribution is that it is universal for a large 
number of points, while the chi-square distribution only can be applied when the variable 
has a normal distribution. When the variable does not have normal distribution, like in 
cases with extreme values, the distribution of a sum of its squares may not be actually 
known. However, it is known that this sum will tend to the normal distribution with the 
increase of the number of points due to the Central Limit Theorem. 

To define the normal distribution for the variance estimate, two parameters are 
needed: the mean value of the variance estimate and the variance of the variance 
estimate. As it is known (and shown in the previous subsection) that the variance estimate 
is biased: its mean value is shifted from the mean sum of squares: 

n M 

m 
n-\ 

(2.82) 

The variance of the variance is expressed with the well known formula: 
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n     nyn-X) 

Here p4 is the fourth central moment of the distribution; as the Weibull distribution has 
been already fitted, the PDF is known so: 

\i4 = ]f(x)(x-mx)
4dx (2X4) 

The fourth central moment of the Weibull distribution can also be directly calculated. 
The excess kurtosis of the Weibull distribution is given by: 

- 6• r/ +12 • r,: • n - 3• rv -4 • r, • r, + r, 

(r2-r,7 

Where: r, = r(l+i/k) 

The fourth central moment is then: 

//4=(3 + /2)CT' (2.86) 

The half-breadth of the confidence interval for the mean estimate is then: 

Finally the complete estimate for the variance is: 

v;=m(V;)±e(V^) (2SS) 

The third parameter is the shift. It is defined as a smallest among observed 
extreme values. Therefore it is the first order statistic (see previous subsection) and has 
the following distribution: 

f(Q) = f0)(x)=Nlif(x)(\-F(x))x" ' (2.89) 

Where /(.v) and F(x) are the PDF and CDF, respectively, of the Weibull distribution and 
are defined with formulae (2.34) and (2.68). 

There is a problem with using the distribution (2.89) for the construction of the 
confidence interval directly. It does not support values less than the observed shift \ 8 
Therefore, all possible values of the shift are larger than the observed one. At the same 
time there is no reason to believe that the observed shift is the smallest possible. 
Therefore it is assumed that the observed shift is some sort of mean value, which can be 
calculated as: 
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(2.90) 

Then the distribution (2.89) shifted by the value w(i>; 

f(Q) = NJ(Q-miU)(\-F(Q-m{U)) •v» i (2.91) 

Both the original and shifted distribution are shown in Figure 2.3. Justification 
of such an approach could be offered as follows. For the uni-modal, slightly 
asymmetrical distribution, the mean value can be considered as an approximation for the 
mode. Following the principle of maximum likelihood, the observed value of the shift 
should have maximum probability, i.e. should correspond to the mode. 

PDF ./t9)=/?i ,(*-/*„,) 

e 
7.4 7.6 7.8 8 

Figure 2.3 Distribution of the first order statistic and distribution of shift 

Once the distribution of the shift parameter has been accepted, further 
calculations of the confidence interval are trivial (see details in the previous section, 
formulae(2.54)-(2.57)). The cumulative distribution function of the shift parameter and 
its derivative are expressed as: 

F(B)=    {/(Gye;    Q(P) = inv{F(B)) (2.92) 
e -m,. 

Here the observed value of the shift is identified with an asterisk to avoid confusion with 
the shift parameter as a variable. The boundaries for the shift parameter are expressed as: 

0/„„ = Q 
1-0 

0    =Q 
fl + P 

(2.93) 

Here P is the accepted confidence probability. 
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To complete the evaluation of the lower and upper boundaries of the Weibull 
distribution, the variable can be scaled to correspond to the upper and lower boundaries 
of the estimate of the variance and shifted to accommodate variability in the mean value 
estimate and the shift parameter. 

The scaling is applied directly to the shifted data points (see formula (2.67)): 

m(l\)-c(VJ 
• i„» 

m(Vx) y„r = -v- 
m(Vx) + e(Vx) 

m{Vx ) 
(294) 

Scaling of the variable does not affect the shape parameter. It can be verified by the 
solution of the equation (2.76) using data points scaled to the lower or upper boundary. 

l/,n, 
•+iZta(yfc)-u- =o 

n ~\ 
y vk> •- 

- i 

(2 95) 

J_ 
k..., * y /- L^- up. 

I=I 

(2 96) 

It was found that within the margin of numerical tolerance: 

(2 97) 

Therefore, as expected, scaling does not affect the shape parameter. The boundary for 
scaling parameters can be found using formulae (2.75) and (2.70) 

, » 

<*/,,» = / .Slow. 
\ n ,=i 

a-P = -lyk (2 98) 

The lower and upper boundaries of the Weibull distribution itself can be found by 
applying a respective shift to accommodate variability of the mean value and shift 
parameter. 
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./;ru)= 

/!(*) = 

a. 
.V + 8(/M*)-0/mi 

> 

a, 

*"'     ( 
cxp 

J 

'jr + e(wQ-8Aw ' 
* > 

V a /(IB 

a, 

.v-e(w')-e„ 

a. 

0 

cxp 

0 

/ 

v 

r.v-£(W;)-e„ .*> 

a 

.v4-e(W;)>e,,m 

.v+e(W;)<e/„„ 
(2.99) 

Figure 2.4 shows Weibull distribution with upper and lower boundary calculated for. 
M,=l. 

Formulae similar to (2.99) can be written for CDFs as well: 

0) = exp 

FZW 
exp 

a, 

'z-BOO-e.x 

a 
»/• 

0 

.v + c(w;)>e/()i, 

x+8(w;)<e/„„ 

x-e(m;)^eKp 

.v-8(w*)<e,(/, 

(2.100) 

Figure 2.5 Shows CDF for Weibull distribution with the confidence interval 

The procedure described above has not formally been proven. Rather, it has to 
be considered as an approximate method allowing the evaluation of statistical uncertainty 
of upcrossing rate calculated on the basis of extreme value theory. This analysis can be 
found in the next subsection. 

0.4" 

0.2-- 

16 18 

Figure 2.4 PDF for Weibull distribution for extreme values (blue), its upper (brown) and lower (red) 
boundaries 
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0.5- - 

Figure 2.5 CDF for Weibull distribution for extreme values (blue), its upper (brown) and lower (red) 
boundaries 

2.2.4.   Evaluation of Confidence Intervals for Upcrossing Rates 

Formula (2.60) relates the CDF of an extreme value distribution to the 
upcrossing rate. The procedure described in the above section derived the approximate 
CDF based on the Weibull distribution corresponding to lower and upper boundaries of 
confidence interval. This confidence interval reflects the uncertainty introduced by 
statistical estimates of the parameters. These boundaries are to be used to estimate the 
confidence interval for the rate of upcrossings: 

Into*)) 
Ts 

lrfc»); 
/(JH -p 

' $ 
X. (2.101) 

This confidence interval is shown in Figure 2.6 along with theoretical value and 
estimates obtained with other methods (described in the previous section). The level of 
crossing was 9 m. The method based on the extreme value distribution provided the 
correct estimate; the theoretical solution is inside the confidence interval. The width of 
the confidence interval is slightly wider than the result based on the censored time before 
the first crossing. 

When the crossing level is raised up to 10 m (see Figure 2.7), the confidence 
interval of upcrossing rate based on extreme values becomes narrower than the 
confidence interval based on censored time before the first upcrossing. Once the crossing 
level becomes higher, the number of crossings decrease dramatically and the statistical 
uncertainty of mean time before the 1st upcrossing also increases. Meanwhile, the volume 
of samples for extreme values does not depend on how high the crossing level is or if 
there any crossings at all. The dependence of the width of the confidence interval on the 
crossing level will be examined later. 

Further increase of the crossing level, up to 11 m. with only 10 crossings leads 
to dramatic widening of the confidence interval for the upcrossing rate based on time 
before the first upcrossing, see Figure 2.8. The rate estimated with extreme value 
distribution retains the meaningful width of the confidence interval that still contains the 
theoretical value. 
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Figure 2.6 Comparison of different methods to estimate upcrocssing rate for the numerical example 
for level 9 m (Total number of upcrossings 153). 
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Figure 2.7 Comparison of different methods to estimate upcrocssing rate for the numerical example 
for level 10 m (Total number of upcrossings 58 ). 

Lowering the level of crossing to 7.75 m leads to significant widening of the 
confidence interval of the crossing rate based on the extreme value distribution (see 
Figure 2.9). Attempts to lower the level further leads to the impossibility to calculate the 
confidence interval as the crossing level becomes larger than the lower boundary of the 
shift parameter. To alleviate this limitation the length of the windows needs to be 
shortened. It is also leads to a narrower confidence interval, see Figure 2.9. 
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The "big picture" is shown in Figure 2.10 and Figure 2.11. The estimate of the 
upcrossing rate along its confidence interval evaluated from the distribution of extreme 
values is shown as a function of the crossing level. The theoretical solution is also shown 
in these figures. Inserts show the same curve for higher crossing levels. Figure 2.10 
shows the curves for /Vw=l, so the window length equals to the length of the record, while 
Figure 2.11 contains the same picture for /Vw=2, there are two windows per record. 
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Figure 2.8 Comparison of different methods to estimate upcrocssing rate for the numerical example 
for level 11 m (Total number of upcrossings 10 ). 

The curves on the both Figure 2.10 and Figure 2.11 follow the same pattern. 
The theoretical solution is contained within the confidence interval until it reaches a 
certain crossing level value. This value is about 7.4 m for Nv~] and 6.2 m for A/w=2. This 
is caused by the limitation of Weibull distribution as it starts from the shift parameter 
which is the smallest among observed extreme values. Naturally, the probability of 
exceeding cannot be evaluated below this level. Using a shorter window makes the shift 
parameter smaller and, therefore allows working with lower crossing levels. 

Looking at Figure 2.10 and Figure 2.11makes it clear why the confidence 
interval increased so much in Figure 2.9 for /Vw=l. The crossing value 7.75 is not very far 
from the limit; the curves in Figure 2.10 turn upward and become almost vertical. 

While the methods based on the extreme method do not work very well for 
smaller crossing levels, it seems to give excellent results for the higher level where no 
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statistics of crossing is available. In the example considered, there is only one crossing on 
the level 12 m. The maximum value observed is about 12.07 m, so there is not an 
upcrossing for the level of 13 m and higher. As it can be seen from the inserts in Figure 
2.10, the method continues to produce correct results well beyond that level. Therefore it 
has a potential for statistical extrapolation. 
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Figure 2.9 Comparison of different methods to estimate upcrocssing rate for the numerical example 
for level 7.75 m (Total number of upcrossings 425 ) 
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Figure 2.10 Estimate of upcrossing rate based on extreme value distribution with confidence 
intervals as a function of crossing level /V„=l 

Making windows smaller, however, decreases performance of the method for 
higher levels. As it can be seen from the second insert in Figure 2.11, the theoretical 
solution leaves the confidence interval somewhere around 15.4 m. 
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Figure 2.11 Estimate of upcrossing rate based on extreme value distribution with confidence 
intervals as a function of crossing level Y,   1 

2.3.Summary 

Order statistics describe the behavior of the A-th largest observation out of total 
number n. Indeed, it is a random variable and, as any other random variable, can be 
characterized by a distribution. 

The behavior of the largest observation (case when k = n) is the subject o\' the 
study of Extreme Value Theory (EVT). The distribution of the extreme values is a limit 
distribution and does not depend on the distribution of the random variable of a stochastic- 
process. If the extreme value distribution is applied to a stochastic process, all 
observations must be done over the same time interval. 

The parameters of an extreme value distribution can be determined from the 
observations using the Method of Maximum Likelihood Estimation (MLE). The MLE 
method is based on the fact that the obsereved data points are, actually, random numbers. 
As these particular values were observed, therefore they are "more likely", or their 
probability of occurring is maximum. 

The extreme value distribution parameters are random numbers, as they are 
calculated from random variables. Therefore the extreme value distribution fitted to the 
observed data is also a random figure and subject to statstistical uncertainty. The 
confidence interval is evaluated for the extreme value distribution as a measure of 
statistical uncertainity. 

The extreme value distribution can be used for the evaluation of the upcrossing 
rate, based on the probability of no upcrossing events occurring during the observation 
time. The confidence interval also can be evaluated for for the upcrossing rate calculated 
with this method. 
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3. Peaks over the Threshold 
This section describes a method of statistical extrapolation using the probabilistic 

properties of the peaks of the envelope that exceed a given threshold. 

3.1.The Problem of Rarity 

3.1.1. Introduction 

Large roll events are rare. The main objective of this work is to develop a method 
of that would be able to characterize the probability of events that are too rare to observe 
in a model test or numerical simulation. This problem is known in the Naval 
Architecture community as "The Problem of Rarity". 

The problem of rarity arises when the average time before a stability failure may 
occur is very long in comparison with the natural roll period, which serves as the main 
time-scale for the roll motion process (definition from SLF 51/WP.2 Annex 1 
paragraph 6.3.2). 

While the problem of rarity was the main obstacle for application of time domain 
methods during the last two decades, the term was introduced only relatively recently 
(SLF 50/4/4). Some review of available treatments of this problem is available from 
Belenky, et al, 2008. 

3.1.2. Statistical Extrapolation as a Solution of Problem of Rarity 

The main challenge of the problem of rarity comes from the nonlinear nature of 
large-amplitude roll motions. To illustrate this statement, one can imagine that roll 
motions can be described by a linear differential equation; then the roll response could be 
completely characterized by a response amplitude operator within the frequency domain. 
As a linear operator does not change the normality of the distribution and the wave 
excitation can be considered as a normal process, the distribution of the response would 
be known to be normal. In this case, the theory of upcrossing would provide the 
necessary probabilistic characterization of crossing any level and the problem would be 
fully solved. 

Even if the nonlinearity would be mild, application of a linearization procedure 
could be justified. This means that it would be possible to find such a linear system that 
would describe the roll motions with sufficient accuracy within a relatively wide range o\ 
variances of excitation. 

The physical reality is different, however. It is well known that large-amplitude 
roll motions cannot, in general, be characterized by normal distribution (Belenky & 
Sevastianov 2007). The type of distribution depends strongly on the shape of the ship's 
righting ami curve, which may change significantly in waves. This leaves time domain 
numerical simulations and model testing as the only available options to characterize the 
large-amplitude roll behavior of a ship. 
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The principle of separation is what allows the problem of rarity to be solved. 
Instead of one problem with very rare events, two or more related problems are 
considered: "non-rare" and "rare". The "non-rare" problem, by its definition, should be 
solvable by a conventional numerical simulation or model test. For example the time- 
split method (Belenky, et a! 2007) considered upcrossing of a level around the maximum 
of the GZ curve as the "non-rare" problem. The "rare" problem then considered the 
probability of capsizing once this threshold was crossed. The "rare" problem was solved 
by a series of short simulations trying to find the initial conditions at upcrossing that will 
lead to capsize. For a single DOF roll problem, this means finding the critical roll rate, 
such that exceeding this critical roll rate when the threshold is crossed leads to capsize, 
see Figure 3.1. The procedure for finding the critical roll rate is illustrated in the insert of 
Figure 3.1. 

The solutions for the non-rare and rare problems can then be combined. The 
combined solution gives the probability of crossing the threshold with initial conditions 
that would lead to capsize (roll rate exceeding the critical roll rate). 

Threshold 

(j)     Upcrossing not leading 
to capsizing 

Upcrossing leading 
to capsizing 

t 

Figure 3.1. Summary of time-split method: separation principle and critical roll ratel 

The same principle is used here. The "non-rare" problem is crossing a threshold 
that is low enough that a statistically significant number of crossings can be observed in a 
model test or numerical simulation. The "rare" problem is a statistical extrapolation of 
the data above this threshold, see Figure 3.2. 

Upcrossing not leading to 
partial stability failure 

To be characterized with 
statistical extrapolation, based on 
the data above the threshold 

Upcrossing leading to 
partial stability failure 

Belenky et al 2008b 
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Figure 3.2 Summary of the current method: separation principle 

Nonlinearity is accounted for by separating the small and large-amplitude motions 
with the threshold. If any sort of statistical fit is used on roll motion data in its entirety, 
the resulting fit will be dominated by the small-amplitude motions where the roll motion 
is still relatively linear, and the influence of nonlinearity will generally not be represented 
properly. The threshold must therefore be high enough, so that the influence of 
nonlinearity above that threshold can be considered substantial. It cannot be chosen 
based purely on statistics. Physical considerations based on the shape of the GZ curve 
must be included as well, see Figure 3.3. These considerations, however, are outside of 
the scope of this report, so therefore the threshold is assumed given. 

Non-rare 
problem 

-• 

Distribution 
based on small 
amplitude data 

Tail of the distribution 
affected by nonlinearity 

Figure 3.3 Nonlinearity and location of the threshold 

3.1.3.   Crossing of Two Levels 

Prior to considering the statistical extrapolation, consider the relationship between 
the upcrossing rates of two levels. Consider a stationary differentiable process .v(/). The 
objective is to find different ways to express the upcrossing rate of level az through the 
upcrossing rate of level a\, provided that ch > a\. 

Generic formulae for upcrossing rates are as follows: 

$, =./'(«,) jxf(x)dx    %2 = f(a2) \xf{x)dx (3.1) 

The formulae (3.1) immediately yield one way: 
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i^^P    P = ^ (32) 

If the first level is crossed, the value P can be interpreted as a conditional 
probability to cross the second level. 

Consider an envelope defined as: 

A(t) = ^x(()2+y(tr (3.3) 

Here y(t) is a complimentary process obtained as a the result of a Hilbert transform. 

If an upcrossing of a level has occurred, a value of the envelope exceeding that 
level exists in the local vicinity. The local vicinity is defined as an interval of time while 
the process x(t) remains above the level az. The local maximum (defined as a maximum 
of the envelope located in the local vicinity) of the envelope limits the local maxima of 
the process. Therefore whether the process will cross the level az depends if the local 
maximum of the envelope exceeds this level or not. 

The probability of the envelope exceeding the level az can be expressed as: 

X 

P(A>a2)= \/M)dA (3.4) 
"2 

The conditional probability that the envelope exceeds level az under the condition 
that level a\ was previously exceeded: 

\fAA)dA 

P{A>a2\A>al)=%  (3 5) 

jfA(A)dA 

Therefore another way to express the second upcrossing rate is: 

X 

\fA{A)dA 

Sa-$i2  (3.6) 
\fMW 

Equivalency of formula (3.6) can be formally proven for a normal process, as the 
distribution of the envelope is known to follow Rayleigh 
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/W= exp 
f   x2 ^ 

v  W.j 

Substitution of (3.7) into (3.6) yields: 

/,(^) = —exP 
A2" 

V   2FW 
(3.7) 

S:=S, J— e> 
' ^ 

II. A 

exp - 

V    2Kj 
dA J-exp '     4

2 \ 
dA 

a, ' .« V     ir A / 2F 

-> \ 

Si 

a2 

2K. i / v^7; 
I a\ 

exp ^ 
2K. i ' 

Z' 2    \ a, 
exp 

2^y V^ 
exp 

- = . \    ^' 

2F. 

= s,^ 

(3.8) 

For any type of distribution of process x(/), comparison of formulae (3.2) and 
(3.6) yields: 

P = f(a2)    ,; 
\/,(A)dA 

/(«i) j./,M)^ 
(3.9) 

Having in mind that the envelope contains all the peaks, the formula (3.9) also can 
be interpreted as the relationship between an upcrossing and a peak. As it is shown in 
Figure 3.4, if a peak is above the threshold, upcrossing did occur as the stochastic process 
is continuous. There is, therefore, a one-to-one correspondence of the occurrence of an 
up-crossing of a level and the occurrence of a peak value over that level The 
consequence of this is a practical one. The peaks may simply be used as a surrogate for 
the occurrence of upcrossings. 

Peak 

Upcrossing of 
the threshold 

Figure 3.4 Relations between peak and upcrossing 



3.2.Properties of Peaks 

As the peaks over the threshold, in principle, can be used as surrogate for 
upcrossing, it makes sense to study the characteristics of peaks in detail. 

3.2.1.   Distrib ution of Peaks 

The total number of positive peaks found in the wave elevation sample dataset 
was 31,065. Positive peaks were defined from the following conditions: 

x     = xit     ) 
max        * V max / W'max)=0)n(x(/maJ<0) (3.10) 

Figure 3.5 shows a histogram of positive peaks superimposed with a Rayleigh 
distribution. A notable feature of the positive peak sample shown in the histogram is the 
presence of negative values. They correspond to secondary peaks, which could be 
expected as the spectrum is not narrow. 

Obviously a Rayleigh distribution is not suitable here. It known that peaks of a 
normal process, characterized by a moderate bandwith spectrum, have a Rice distribution 
that tends to a Rayleigh distribution with a decrease of the bandwith and to the normal 
distribution with an increase of bandwith. 
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Figure 3.5 Histogram of positive peaks and Rayleigh distribution 

Part of the distribution of the positive peaks, nevertheless, can be described by a 
truncated Rayleigh distribution, defined as follows: 

a ( 
/0,(a) = /r„(a,)—exp 

a 

2V 

2   \ 

(3.11) 
v / 

Here k„ is a normalization coefficient depending on the truncation value ah Vx is 
the variance of the process x. The normalization coefficient can be evaluated in closed 
form as: 
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M<0= 
ra jTTexp 

(       i \    \ a 

v„. V. 
da 

~>V 
= exp 

(       2   \ a. 

&J 
(3.12) 

However it is better to evaluate it in discretized form using the width of the 
bucket AJC: 

(    V7. 

KM',) = 
\ 

X./>,)^ a>=abeg (3.13) 

Where beg is the index corresponding to the value of truncation a,.  The histogram also 
needs to be re-normalized: 

kM) a, = a bt v 
(3.14) 

The truncated Rayleigh distribution and truncated histogram are shown in Figure 
3.6. The value of truncation was chosen to pass the Pearson chi-square goodness-of-fit 
test; the results of which are also shown in this figure. 
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1 ThTn-^-—^ 
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Figure 3.6 Histogram of positive peaks and truncated Rayleigh distribution 

As it can be seen, the results of Pearson chi-square goodness-of-fit test shown in 
Figure 3.6 does not reject Rayleigh distribution for peaks starting from the bin 23. which 
corresponds to 1.51 m. This means that above the truncation value, secondary peaks arc 
not statistically significant, so most of the sample population consists of primary peaks 
that belong to the envelope. The latter circumstance leads to applicability of Rayleigh 
distribution. 

A similar picture can be observed for the sample of wave elevation recorded by a 
wave probe moving with constant speed and direction (see subsection 4.2). For 
following seas, the encounter spectrum becomes very narrow banded (see Figure 4.10 in 
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subsection 4.4.1). The entire histogram is shown in Figure 3.7. Visually, it looks much 
more like Rayleigh distribution with a very small negative area. However, it takes setting 
the truncation starting at bucket 5 with the value of 0.54 m to get the Pearson chi-square 
goodness of fit test to pass, see Figure 3.8. 
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Figure 3.7 Histogram of positive peaks for the case with forward speed 15 knots and Rayleigh 
distribution 
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Figure 3.8 Histogram of positive peaks for the case with forward speed 15 knots and truncated 
Rayleigh distribution 

3.2.2.   Estimate of Rate of Events for Positive Peaks 

Following the concept of the upcrossing rate, it is possible to come to similar 
formulations for positive peaks using statistical extrapolation. 

Consider a sample of stochastic process x, presented in the form of an ensemble 
of NR records. Each record is represented by a time history of N/-T points with the time 
step A/, totaling n= Npr\ time steps. Then the event of occurrence of a peak exceeding a 
given threshold, or the level a, can be associated with an auxiliary random variable, W, 
defined for each time step as follows (see Figure 3.9): 
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ws.. = • 
xij >°^x,., >-Vi.,n-v,/ >xMJ 

[0   Otherwize 

i = l,..,n;   j = l,...,NR 

(3.15) 

1O1O1O1O1O1O1I1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1I1O1O1O1O1O1O1O1O1O 

Figure 3.9 Auxiliary random variable for positive peaks over the threshold 

This random variable W is defined analogously to auxiliary random variable U, 
see the subsection 1.2.1. Following the same logic, the total number of all crossings is 
just the sum of the values of the auxiliary variable for all time steps for all records: 

«   v« 

Nn   =Z2X (3.16) 

An estimate of the probability that a peak exceeding the threshold will occur at 
any given instance of time is given by: 

Pm - 
N„ 1 II*:., 

The mean number of peaks over the threshold per record: 

(3.17) 

A/ 1      "    v* 
(3.18) 

The rate of events for the positive peaks over the threshold can be introduced 
analogously to the rate of the upcrossing. Its estimate over a finite volume of data is 
defined as: 
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**PPoT ~      .     ~ nAt    nNRAt~? * I2X (3.19) 

While the theoretical definition can be obtained as a result of a limit of transition 
for an infinite number of records and infinitely small time step: 

1    <^ 
XPPoT = Um Cor - Jim -77-rrZzX/ =37 }•Z^1LL

W
IJ **-»* «A^A/ 7-^7-7 dt <**-** nN 

n—>x 
A/->0 

/? /=i  ;=i 

= — lim = — urn pw =  
dt "*-*« nN R     dt v*->x dt 

II—*T « >t—»T 

(3.20) 

The confidence interval for the estimate of the rate can be computed using a 
binomial distribution for the auxiliary variable W, exactly in the same way as it was done 
for upcrossings. The results for the 9 m crossing level shown in Figure 3.10 (for zero- 
speed case) 
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Figure 3.10 Upcrossing rate and rate of positive peaks over the threshold. Crossing level 9 m 

Similar results for a range of levels are shown in Figure 3.11, while numerical 
values can be seen in Table 5. For all of the cases, with the exception of one (<7=10 m), 
the confidence interval of the estimate of the rate of events for positive peaks over the 
threshold contains the theoretical upcrossing rate. The exception is likely to be caused by 
random reasons, as it is local. In fact it can be caused by a peak in the beginning of the 
record, so it was counted as part of sample of peaks, but there were no upcrossing 
corresponding to that peak, as the process probably crossed the level before time zero (for 
10 m crossing level there were 60 peaks and only 58 upcrossings, so two peaks were in 
the beginning of the records). 
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I   10 ' 

Figure 3.11 Theoretical upcrossing rate (red line) vs. rate of events of positive peaks over the 
threshold 

3.2.3.   Poisson Flow and Positive Peaks 

The equivalence between an upcrossing and a positive peak over the threshold can 
be further illustrated by demonstrating that positive peaks over the threshold follow a 
Poisson flow. A direct test of a Poisson flow was applied as described in the subsection 
1.3.5 on page on page 49. 

Each record was divided by Nw windows of length 7^ to keep the maximum 
number of event below 7. Then, the sample was created by counting the number of 
positive peaks over the given threshold in each window. A Pearson chi-square goodness- 
of-fit test was used to check the applicability of the Poisson distribution based on the 
statistically estimated rate of events for positive peaks over the threshold. The results are 
shown in Table 5. The mean value and variance were estimated, and their ratio is also 
included in Table 5 as an indicator of applicability of Poisson distribution. Figure 3.12 
shows details for the crossing level/ threshold of 9 m. 

The results from Table 5 show that the Poisson distribution is not rejected until 
the threshold is lowered to between 5.5 and 5.25 m, which is the same as was for 
upcrossings, see section 1. This is one more indication of statistical equivalence of these 
random events. Finally, Figure 3.13 shows the histogram for 1 m level of crossing. Of 
course,the Poisson distribution is rejected, as most of the data is clustered around 3 and 4 
events per 46 second windows, which corresponds to a variation around a mean period of 
the process of 12.6 s. A visual indication of the inapplicability of the Poisson distribution 
is given by the more sharp form of the histogram, caused by the concentration of data in 
buckets near the mean period. 
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Crossing level 9 m 
Total 154 positive peaks over the threshold 
Number of time windows per record AT„.= I 
Duration of time window r<=l800 s 
Volume of sample 200 
Estimate of mean value mk'=0.77 
Estimate of variance r/= VxPP = 0.7004 
Ration*/ Vk'=1.099 
X2=2.49 d=3 P(xl.ct)= 0.4769 

Figure 3.12 Probability mass function of number of positive peaks over the threshold during time 
window. Poisson distribution is not rejected 

Table 5 . Applicability of Poisson flow and rate of events of positive peaks over the threshold 

Level Nt r„ mkJVk 

Direct Poisson Test Theoretical 
rate of 
uperossinys 

Rate of positive peaks over threshold 

<Vm»* d %~ P^iAXA) low estimate upper 

II 1800 1.047 2 0 0.02532 . 3.23K-05 1.11E-05 2.78H-05 4.72E-05 

10.5 1800 1.077 3 1 0.5205 0.4706 6.44K-05 5.28E-05 8.06E-05 0.000111 

10 1800 1.148 3 1 1.178 0.2778 0.000124 0.000125 0.000167 0.000211 

9.5 1800 1.059 S 3 3.467 0.3251 ().()(M)232 0.000225 0.000278 0.000333 

9 1X00 1.099 5 3 2.491 0.4769 0.00042 0.000361 0.000428 0.000497 

x 5 1800 1.094 6 4 1.481 0.83 0.000737 0.000622 0.000708 0.000797 

8 1800 1.384 7 5 7.443 0.1897 0.00125 0.001103 0.001217 0.001331 

7.5 i 900 1.088 8 6 4.708 0.5818 0.002055 0.001903 0.00205 0.002197 

7 4 450 1.047 7 5 1  M6 0.8831 0.003272 0.003025 0.003208 0.003394 

6.75 5 360 1.041 7 5 1.687 0.8905 0.004078 0.003814 0.004019 0.004228 

6.5 9 200 1.024 6 4 4.585 0.3326 0.005044 0.004781 0.005011 0.005242 

6.25 11 163.5 0.9925 6 4 1.585 0.8115 0.006187 0.005919 0.006175 0.006431 

(. 13 138.5 1.041 7 5 3.188 0.671 0.00753 0.007261 0.007544 0.007828 

5.75 13 138.5 1.072 7 S 11.19 0.04774 0.009091 0.00885 0.009164 0.009475 

5.5 15 120 1.073 " 5 9.331 0.09657 0.01089 0.01043 0.01077 0.011 II 

5.25 19 94.5 1.115 7 5 31.89 6.25E-06 0.01293 0.01251 0.01289 0.01325 

5.25 19 94.5 1.115 7 5 31.89 6.25E-06 0.01293 0.01251 0.01289 0.01325 

5 21 85.5 1.177 7 5 74.57 I.14K-I4 0.01524 0.01476 0.01516 0.01556 

4 75 22 82 1.218 7 5 87.16 0 0.01782 0.01746 0.01789 0.01833 

3 32 56.5 2.271 6 4 1299 0 0.04253 0.04175 0.04242 0.04308 

1 39 46 6.204 7 5 6305 0 0.07103 0.07286 0.07375 0.0746 
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Crossing level 1 m 
Total 26549 positive peaks over the threshold 
Number of time windows per reeord /VH.=39 
Duration of time window Tk=46 s 
Volume of sample 7800 
Estimate of mean value m* =3.3942 
Estimate of variance l\'=0.5471 
Ratio mk'l F(*=6.204 
X:=6305d=5P(x:.c/)=0 

Figure 3.13 Probability mass function of number of positive peaks over the threshold during time 
window. Poisson distribution is rejected 

3.3.The Rare Problem 

Solving the rare problem means finding the probability that the process will 
exceed a given level after an upcrossing of the threshold has occurred. The only 
information available is the data of the process beyond the threshold; these data may not 
go as far as the level of interest, so it is a typical extrapolation problem. 

It was shown above that if the distribution of peaks is known, then the rate of 
upcrossings through the given level can be found using formula (3.6). In fact, if the data 
of peaks over the threshold is used to fit the distribution, this distribution already is 
conditional, therefore: 

%2=%x  [f\{A\A>a,)dA = %\\-F(A\A>a)) (3 21) 

Therefore the objective of the rare problem is finding the conditional CDF of 
positive peaks above the threshold. 

3.3.1.   POT Distribution and the Confidence Interval 

For a general stochastic process, the distribution of amplitudes and conditional 
distribution of peaks above the threshold are not known. As the process of interest is a 
response of a highly nonlinear dynamical system, there is a very small chance that such a 
distribution can be obtained in closed form. Therefore it needs to be fitted with some 
approximate formula using available data. 

On the other hand, such distribution is known to be Rayleigh for a normal 
process. As the process of interest is a response of a nonlinear dynamical system on 
normal   excitation,   it   may   be   meaningful   to   try   a   Weibull   distribution   as   an 
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approximation, keeping in mind that the Rayleigh distribution is formally   a particular 
case of the Weibull distribution. 

Using a Weibull distribution in such a context, however, should not imply any 
limiting characteristics of the distribution. In principle, Weibull distribution is an extreme 
value distribution (see section 2). Extreme value distribution is a limit distribution to 
which the maximum value observed during a given time tends. However, using just peaks 
over the threshold, to fit the Weibull, means that it is used only as an approximation 
formula that possesses some convenient characteristics, like normalization. 

Figure 3.14 shows a histogram of peaks over the threshold (for 9 m) fitted with a 
Weibull distribution along with the results of the goodness-of-fit for the Weibull 
distribution fitted with the moment method and the method of maximum likelihood. Both 
ways of fitting the Weibull distribution were not rejected as well as the truncated 
Rayleigh distribution. A similar picture can be seen from the Figure 3.15 

,-p.df. 
Weibull fit, moments method, x"= 1.4628, d=5, P=0.917 
Weibull fit, maximum likelihood, x2= 1.7459, d=5, P=0.8831 
Truncated Rayleigh distribution x:=l 1-205, d=7, P= 0.1299 

9.5 10       10.5 11 11.5       12 

Figure 3.14 Fitting the distribution for positive peaks over the threshold 9 m, 154 peaks total 

Weibull fit, moments method, x3= 16.255, d=l4, P=0.298 
Weibull fit, maximum likelihood, y;= 15.258, d=14, P=0.3608 
Truncated Rayleigh distribution x*=l 8.9911, d=16, P= 0.269 

8 9 10 II 12 13 

Figure 3.15 Fitting the distribution for positive peaks over the threshold 7 m, 1155 peaks total 
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The procedure for calculating the confidence interval for a fitted Weibull 
distribution has been described in Section 2. The only difference here is that the shift 
parameter is known and it is equal to the threshold. Figure 3.16 shows the confidence 
interval for the Weibull distribution fitted with the moment method for a 9 m threshold, 
with both PDF and CDF are shown. As it has been demonstrated earlier, the true 
distribution of this case is Rayleigh; and it is also shown in the CDF plot. It can be clearly 
seen that Rayleigh differs from thw fitted distribution enough, so that part of the curve is 
actually outside of the confidence band. The difference, however, is not very large and 
the theoretical curve returns back to the confidence band around a peak value of 10 m. 

The results are better if the Weibull distribution is fitted with the method of 
maximum likelihood, see Figure 3.17. Here the theoretical Rayleigh distribution remains 
within the confidence band all the time. The evident outcome is that the method of 
maximum likelihood provides better results; this is consistent with existing statistical 
practice, where the moment method is only used to get initial values for the method of 
maximum likelihood. 

Lowering the threshold naturally leads to increase the of number of peaks over the 
threshold and, as a result, a more accurate fit. As seen from the Figure 3.18, the 
confidence band has shrunken and it contains a theoretical Rayleigh distribution within. 

This consideration shows that the choice of the threshold is not only dictated by 
the applicability of the Poisson distribution, but also by statistical accuracy of fitting the 
distribution. This question, however, needs to be addressed later when the entire result 
will be obtained and compared with the "true" theoretical answer. 

-vmax, m 

Figure 3.16 Confidence interval on YYeibull distribution fined with moments method. The threshold 
9 m, 154 peaks total 
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Tp.dj: 

Figure 3.17 Confidence interval on Weibull distribution fitted with maximum likelihood method. The 
threshold 9 m, 154 peaks total 

a) 

b)      1 -r 

Figure 3.18 Confidence interval on Weibull distribution fitted with method of moments (a) maximum 
likelihood method (b). The threshold 7 m, 1155 peaks total 
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3.3.2.   Statistical Extrapolation of Peaks Over the Threshold 

Formula (3.21) gives the final expression for the extrapolated estimate of 
upcrossing rate for the level interest (the second level 02): 

l\ =X'(\-F'(a2)) (3 22) 

Here A*v is an estimate of the upcrossing rate extrapolated to the level of interest 

«2. ^* is the statistical estimate (by counting) of the upcrossing rate of the given threshold 
a\. F*(ai) is the CDF fitted to peaks over the given threshold a\. 

As all the terms in the equation (3.22) have their boundaries of confidence 
interval defined, it is possible to express these boundaries for the final result: 

^,„„=C(l-C(«:)) (323) 

Xx*=X*(l-Kw) (3-24) 

To evaluate the quality of the extrapolation, the extrapolated value can be 
compared with the theoretical solution, as it is available for consideration, see Figure 
3.19. 

W (       n-   \ 
(3 25) 

Here Vx is the variance of the process and Vi   is the variance of the derivative of the 

process x(t). 

Figure 3.19 shows excellent quality of extrapolation, as the theoretical solution 
remains within the confidence interval before the numbers become too small to handle. 
Unfortunately, it is not always the case. Lowering the threshold may decrease the quality 
of extrapolation, see Figure 3.20. The theoretical solution leaves the confidence interval 
on the level 11.18m. It may not look like a good quality of extrapolation; however it still 
was able to predict amplitudes more than 4 m above the threshold of 7 m, which is above 
50% of the threshold. 

Therefore, the choice of the threshold is important. Figure 3.21 shows a 
"breakpoint" of the method as a function of the threshold. The "breakpoint" is the level 
below which the extrapolation is still good. As it can be seen from Figure 3.21, the 
dependence is not monotonic. It remains almost horizontal until a threshold of 8 m, then 
starts to increase and reaches its maximum of 26 m somewhere around 9 m. This is the 
situation shown in Figure 3.19, where the theoretical value is contained in the confidence 
interval of the extrapolated value. The level of 26 m is where the calculations were 
stopped as arithmetical difficulties, related with handling a very small number, were 
encountered. Also, rarity of the upcrossing level of 26 m is such that it makes 
consideration impractical as the mean value before/ between the events is around 10 
seconds - is about 3.1 10   years. 
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Figure 3.19 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing 
level vs. theoretical upcrossing rate. The threshold 9 m, 154 peaks total. 
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Figure 3.20 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing 
level vs. theoretical upcrossing rate. The threshold 7 m, 1155 peaks total. 
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Around the threshold of 9.25 m, the breakpoint falls back to the 13-14 m level 
(see Figure 3.23) and remains there until the 9.75 m threshhold. Then it goes back to "no 
breakpoint" (26 m) and remains there (Figure 3.24) until the data for fitting the 
distribution "runs out". The volume of data available for fitting the distribution is placed 
in Table 6. 

Threshold, a\, m 
7 8 9 10 II 

Figure 3.21 Breakpoint level (the level below which the extrapolation is still good) vs threshold 

Figure 3.22 illustrates the performance of the method for the 14 m level. This 
level is actually quite high; the mean time before/between events for upcrossing this level 
is about 44 days. Roughly, acceptable performance (with very few dropouts) can be seen 
from the level exceeding 8.5 m 
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Figure 3.22 Comparison of performance of extrapolation method for 14 m using different values for 
the threshold 

Table 6. Number of positive peaks over threshold 
Threshold Number 

of POT 
Breakpoinl 
level, m 

Threshold Number of 
POT 

Breakpoint 
level, m 

6 2716 10 9.25 124 14.61 

7 1155 11.18 9.3 119 13.64 

8 438 11.24 9.4 III 14.05 

8.5 255 14.8 9.5 100 12.8 

8.75 197 22.2 9.75 S3 25.67 

8.9 174 22 24 10 60 26 

9 154 26 10.5 29 26 

9 1 144 26 10.75 16 26 

9.15 138 26 11 10 13.4 

9.2 132 26 
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Figure 3 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing 
level vs. theoretical upcrossing rate. The threshold 9.5 m, 100 peaks 
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Figure 3.24 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing 
level vs. theoretical upcrossing rate. The threshold 10 m, 29 peaks 

106 



Based on these observations, two questions need to be answered: 1) What is the 
main contributor to the quality of extrapolation? 2) How random are these results, or can 
the same picture be observed with other records of the same process? 

To answer the first question, consider the components of the extrapolated 
estimate: the rate of upcrossing through the threshold (see Figure 3.25) and the 
conditional probability of the given level (14 m) is exceeded if the threshold was crossed 
(see Figure 3.26). As it can be seen from Figure 3.25, the estimate of threshold crossing 
behaves relatively smoothly, keeping the theoretical solution within its confidence 
interval. The estimate of the conditional probability in Figure 3.26 behaves in a more 
random manner. It "catches" the theoretical solution with its confidence interval starting 
about 8.5 m, then "loses" it, than "catches" it again. Obviously, the estimate of 
conditional probability is the one "responsible" of quality extrapolation, at least for the 
sample considered. 

To answer the second question, two more examples were considered. The process 
was constructed from exactly the same spectrum and discretization as described in 
Section I. The only difference was the set of random phases that makes these sets 
independent from the first one. 

Figure 3.27 shows the "breakpoints" behavior vs. the threshold for two alternative 
datasets. Comparing these plots with the similar one in Figure 3.26 made from the 
original dataset one can see that despite their different shapes, still there are some 
common features. There is a relative monotonic part up to about 8 m, then the 
dependence becomes oscillatory, but keeping the similar tendency to grow. Comparing 
performance of the extrapolation method for a level of 14 m (Figure 3.28) for the 
alternative datasets one can see that for the alternative dataset 1, the extrapolation starts 
working at 9.5 m and for the alternative dataset 2 at 8.75 m. The original dataset gave the 
value around 8.5 m (Figure 3.22), so, in general, the range is about 8.5-9.5 m. 

't 
•-b 

I 
v- 
O 

0 — 

 1 
0 II 

Threshold. <;,, m 

Figure 3.25 Statistical estimate of upcrossing rate through the threshold 
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Figure 3.26 Extrapolated estimate of conditional probability that the process will exceed the level of 
14 m if the threshold has been crossed 

25' 
a) Alternative set 1 

Breakpoint level. a2, m 

20- 

15 • 

10 • 

5 ' 

Threshold,«,, m 
 1 1 1 1 h 

10 

30r 

25- 

20 

15" 

I 

5 t 

b) Alternative set 2 

Breakpoint level, a2, m 

Threshold. a(, m 

10 

Figure 3.27 Breakpoint level (the level below which the extrapolation is still good) vs threshold 

a) Alternative set 1 b) Alternative set 2 

Threshold, at, m 
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Figure 3.28 Comparison of performance of extrapolation method for 14 m using different values for 
the threshold 

Figure 3.29 shows behavior of two components of the POT extrapolation method 
for two alternative datasets for 14 m level. The upper plots show the statistical estimate 
of rate of upcrossing of the threshold. The plots are very similar to each other and to the 
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plot based on the original dataset in Figure 3.25. The estimate is almost indistinguishable 
with the theoretical solution for the lower thresholds. With an increase of the threshold, 
the estimate slowly oscillates around the theoretical solution, while it remains within the 
confidence interval. The latter one increases monotonically with the rise of the threshold 
and decrease of the number of observed upcrossings. 

The behavior of the estimate of the conditional probability (lower plots of Figure 
3.29) is characterized by more oscillations. The estimates on both plots, as well as for the 
original dataset, in Figure 3.26, have a relatively monotonic range for the thresholds, but 
the theoretical solution is not "caught" by the confidence interval. With the increase of 
the threshold, the behavior becomes oscillatory, the confidence interval increases and 
theoretical solution is included now. At least, the tendency is roughly traced, which was 
not clear from Figure 3.26 alone. 

Concluding the consideration of these two questions, it can be stated that the 
prediction capability of the method can be advanced, by improving the technique for 
estimating the conditional probability. 

It is also clear that when the threshold is too low, the fitted conditional 
distribution is dominated by the data not very far from the threshold itself, which is not 
necessarily allowing the correct prediction of the tail of the distribution. 

a) Alternative set 1 a) Alternative set 2 

0.01 

Figure 3.29 Statistical estimate of upcrossing rate through the threshold (upper plots) and 
extrapolated estimate of conditional probability that the process will exceed the level of 14 m if the 

threshold has been crossed (lower plots) for two alternative data sets 
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3.3.3.   A Iterative Solution for Rare Problem 

Difficulties predicting the behavior of the tail of fitted distributions are not new. 
These difficulties were one of the motivations for the development of the extreme value 
theory; therefore it is quite logical to try to use extreme distributions for the rare problem. 

Consider the probability that no upcrossing will occur through the level a-i during 
time T\ assuming applicability of Poisson flow: 

P2(«2=0,7,) = exp(-X2r) (3.26) 

Here, «2 is number of upcrossing through the level ai, ^>is rate of upcrossing through the 
level 02. 

Now consider upcrossing through the level a\, such as: 

a2>at (3.27) 

The probability that no upcrossing will occur through the level az during time T\ 
assuming applicability of Poisson flow can be expressed as: 

/>(«1=0,r) = exp(-X,r) (3.28) 

Here n\ is number of upcrossings through the level a\, A.|is rate of upcrossing through the 
level a\. 

Probability Pi can expressed through the probability P\. That is, if there are no 
upcrossings through the level a\t there are no upcrossings through a 2', or there are some 
upcrossings through a\, but the process never reached the level ai- As the events of no 
upcrossing through the level a\ and at least one upcrossing through the level a\ are 
incompatible, the probability P% is expressed as: 

P2=/>+/>(«2=0nra1 >0) (3.29) 

Here P(n2=0 C\ n\>0) is a probability that no upcrossing occurs through the level ai and 
there is at least one upcrossing through the level u\. This probability can be expressed as: 

P(n2 =0n», >0)=P(n2 = 0 |«, >Q)P(nt > 0) (3.30) 

Here P(n2=0 | «i>0) is a probability that no upcrossing occurs through the level ai if there 
is at least one upcrossing through the level a\, while P(n\>0) is a probability of at least 
one crossing through the level a\. This is the probability of a complimentary event to 
equation (3.28): 



P(,h >0) = 1-P(n, =Q,T) = ]-exp(-XlT) (3.31) 

Consider an extreme value distribution obtained over time T (the distribution of 
the maximum value observed during time T). By definition, the cumulative distribution 
function is: 

Fn lx,T) = r(max(x,T)<.x) (3.32) 

Here max( v,F) stands for a maximum value of process x(t) observed during time T. 

Using the technique proposed by G. Hazen and described in detail in Section 2, a 
probability of a complimentary event (at least one upcrossing during time T) can be 
expressed using an assumed Poisson flow: 

\-exp(-l2T)=\-F„(a2S) (3 33) 

So, it clear from equations (3.32) and (3.33) that the probability of no upcrossing 
through the level aj is equal to the CDF of the extreme value observed during time Tand 
calculated for the level ai. 

e\p{-X2T)= FEV(a2,T) ,3 34) 

Consider a conditional distribution of an extreme value reaching the level a: 
under condition that it has exceeded the level a\, minding the condition (3.27): 

./,, (.v = a2,T\ x >a,) =   >•     - (3 35) 

Here divisor F/.;i{a\,T) plays the role of a normalization coefficient. 

Conditional CDF can be expressed analogously to the equation (3.35): 

hEX (x = a2,T\x>a])= - (3.36) 
FEV(ax,T) 

By the definition of CDF: 

FFJ (x = a2,T \ x > a^)= P(max(x,T) < a2 |max(.v,7')> a,) (3.37) 

If an extreme value observed during time T has exceeded the level a\, then the 
number of upcrossings through this level observed during time Tdiffers from zero: 

{max(x,r)>a,}o {«, >0} (3.38) 

If the extreme value observed during time T has not exceeded the level tti, then 
the number of upcrossings through this level, observed during time T, is zero. 



{msa.(x,T)<a2}o{n2=0} (3.39) 

Equations (3.36) and (3.37) lead to the following: 

P(n2 =0|w, >0)=P(max(.v,7')<a: | max(.v,r)> a,) (3.40) 

Formula (3.35) relates the conditional probability of no upcrossings of the level 02 
given there are upcrossings through the level ct\ conditional extreme value CDF: 

P{n2=0\nl >0)=FEV{x = a2,T\x>al) (3.41) 

Substitution of (3.41) and (3.36) into (3.29), taking into account (3.30) and (3.31), 
leads to: 

Taking into account formulae (3.26) and (3.28) allows expressing the rate of 
upcrossings of the level ai through the rate of upcrossing of the level a\ and extreme 
value distributions: 

/ 
*.,=--In 

T exp(-A.17')+(l-exp(-X17'))-f! 
FE,\a,jy 

\ FFA^T) 
(3.43) 

Formula (3.43) represents the complete solution of the problem with a different 
formula than (3.8) . A combination of a rare and non-rare problem. It is trivial, however 
to express the solution of rare problem from (3.43) explicitly: 

P =—— In 
XT 

exp(-V) + 0-expU,r))§I^^ (3.44) 

Formula (3.44) allows the use of an extreme value distribution for the rare 
problem. 

3.3.4.   Extreme Value Distribution for Peak over Threshold 

To use the alternative solution for the rare problem described in the previous 
section, the conditional extreme value distribution of peaks over the threshold is needed. 
The procedure of fitting the extreme value distribution was described in detail in 
section 2 and briefly revisited below. 

First the window size has to be set up. It should be large enough so that the 
maximum value observed in each window can be considered as an independent 
realization. For all further calculations, window size was taken equal to the record length 
unless otherwise stated. 
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The sample data has to be collected to fit a Weibull distribution. The data points 
are the maximum values observed in each window. To avoid dealing with uncertainty of 
the shift parameter, only points that have exceeded the threshold a\ are collected. Next. 
the fitted distribution is actually the conditional extreme value distribution, needed for 
formulae (3.43) and (3.44). The conditional distribution in CDF form is expressed as: 

Fn (*m«  \**m  >a^ = 

0 

exp 
if yt> 

(I 

*„»»   < «| 

•V,nav   ^ «I 
(345) 

Parameters of the distribution k and a are determined using the method of 
maximum likelihood, with the initial values coming from the method of moments. 
Evaluation of the confidence interval is not different than in the previous case. An 
example for the threshold value of 9 m is shown in Figure 3.30. 

Figure 3.30 Fitting the Weibull distribution with confidence interval for peak over the threshold 
data, the threshold 9 m, and window time 1800 s (time duration of entire record) 

3.3.5.   Extrapolation with Extreme Value Distribution of POT 

Once the distribution has been fitted, formula (3.43) can be used for extrapolation. 
Figure 3.31 shows sample results for the 9 m threshold, using the distribution shown in 
Figure 3.30. 
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Figure 3.31 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing 
level vs. theoretical upcrossing rate based on extreme value distribution of peaks over the threshold. 

The threshold 9 m, 111 peaks 

Unfortunately, good extrapolation shown in Figure 3.31 does not mean that it 
remains the same for any threshold. Figure 3.32 shows "breakpoint" value for the 
extrapolation based on extreme value distribution. In principle, a general picture is 
similar to Figure 3.21; however the lower level of the breakpoint seems to be a bit higher. 

Breakpoint level, a2, m 

Figure 3.32  Breakpoint level (the level below which the extrapolation is still good) for the 
extrapolation based on extreme value distribution vs threshold 

The difference between two techniques of extrapolations becomes clearer when 
comparing the rare solution calculated for a particular target level -14 m (the level where 
the prediction is needed); see Figure 3.33 and compare with Figure 3.26. In general, a 
solution based on extreme value distribution is closer to the theoretical one. Most 
importantly, the prediction is correct for relatively low levels where more data exist and 
the confidence interval is narrower. 
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Figure 3.33 The extrapolated estimate of conditional probability that the process will exceed the level 
of 14 ni if the threshold has been crossed (based on extreme value distribution) 

Similar conclusions can be made comparing the complete results of extrapolations 
between the two methods, see Figure 3.34 and Figure 3.22. Acceptable performance can 
be observed for almost the entire range of the thresholds for the extreme-value based 
technique in Figure 3.34 vs. direct POT fitting shown in Figure 3.22. This difference can 
be explained by the extreme value distribution model's much better behavior of the tail of 
the distribution as it is its main "specialty". 

10 

9i 
a 

si c 

- 
•— 

c 
V 

SI 

110 

-12 

10 
Threshold.«,, m 

_l I  
7.5 8.5 9.5 10.5 I I 

Figure 3.34 Comparison of performance of extrapolation method for 14 m using different values for 
the threshold (based on extreme value distribution) 

Figure 3.34 shows some oscillation of the extrapolated estimate around the 
theoretical solution. As the threshold increases, the oscillations become larger and the 
confidence interval no longer contains the theoretical solution. The deterioration of the 
extrapolated estimated made with increasing threshold can be explained by a decrease in 
the amount of available data to fit the extreme value distribution, as fewer and fewer 
values exceed the threshold. 

Averaging of the estimates over a portion of the threshold range seems to be the 
natural way to improve stability of these calculations.   As it is known from experience. 
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100-150 data points is considered a minimum amount of data to fit the distribution. This 
number can be used as a criterion for the high-end threshold. 

K 
N I>:K) (3.46) 

oi <=i 

Here Xza is the extrapolated estimate averaged over Na\ threshold values au, and A^ai,) is 
a value of the extrapolated estimated based on the threshold a\,. 

Lower and upper boundaries of the confidence interval can be also be averaged in 
the first expansion: 

ftaFi?K)        VS =T|-X^K) (3-47) 

Here A.'""   and A."'', are lower and upper boundaries of the confidence interval for the 

averaged extrapolated estimate.     )iT(a\i)   an^   ^T(fli.)   are tne boundaries  for the 
extrapolated estimated based on the threshold au. 

Figure 3.35 shows the result for the target level a2=\4 m. The theoretical solution 
hits almost exactly in the middle of confidence interval. 
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Figure 3.35 Level 14 m: theoretical solution and extrapolated estimate averaged for the thresholds 
7.5-8.5 111. The distribution for the threshold 8.5 m was fitted with 149 points 

Figure 3.36 shows the performance for all levels from ^2=9 to 22 m. The break point is 
20 m, which gives an upcrossing rate of 5.5* 10"13; this is more than enough for practical 
calculations as the mean time to an event is about 57,000 years. 

Successful application of the averaging over several thresholds for the current 
numerical example does not yet prove that it will work as well for all other cases. While 
it seems to be impossible to prove, it still makes sense to try it at least on two alternative 
data sets used earlier in this section. Figure 3.37 shows the dependence of the 
breakpoints of these datasets as a function of the threshold, similar to Figure 3.32. The 
lowest point is about 13 m in both cases. 
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Figure 3.36 Theoretical solution and extrapolated estimate averaged for the thresholds 7.5-8.5 m. The 
distribution for the threshold 8.5 m was fitted with 149 points 

Breakpoint level. a2, m Breakpoint level. <;: 

Figure 3.37 Breakpoint level (the level below which the extrapolation is still good) for the 
extrapolation based on extreme value distribution vs threshold for two alternative data sets 

Figure 3.38 shows behaviors of the rare solution and the eomplete extrapolated 
estimate for ai=\4 m using two alternative datasets. These behaviors are principally 
similar to the original set seen in Figure 3.33 and Figure 3.34. Quite a number of 
threshold values enables the estimate "to catch" theoretical solution in its confidence 
interval. 

Figure 3.39 shows results of the averaging technique for the two alternative 
datasets. The performance is not as dramatic as the original one, but is still usable. 
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Figure 3.38 extrapolated estimate of conditional probability that the process will exceed the level of 
14 m if the threshold has been crossed - rare solutions (upper plots: a, b) and complete extrapolated 

estimate (lower plots: c, d) for two alternative data sets for a2=T4 m 

10 - 

I   10 

III 

a) Alternative set 

Log rate of upcrossing, log( 1/s) 

Theoretical 
solution 

&  

Averaged 
extrapolated 
estimate 

 I  

I   10 

I  10 

10 

-6             b) Alternative set 2 
i 

Log rale of upcros sing, log(l/s) 

,-7 Theoretical 
1 solution 

Averaged 
extrapolated 
estimate 

,-8 I              l              l 

Figure 3.39 Level 14 m: theoretical solution and extrapolated estimate averaged for the set I 
thresholds 7.5-8.5 m. The distribution for the threshold 8.5 m was fitted with 145 points. For the set 2 

range is 7.5-8.6 m with 146 points for the threshold 8.6 m. 

Finally, Figure 3.40 compares the theoretical solution with the extrapolated 
estimate averaged through a range of the thresholds. Breakpoints for the alternative 
dataset lay on the levels of 15.25 m and 21.1m respectively. Even the lowest breakpoint 
corresponds to the value of the rate 2.53 M0"x s , while the mean time before the event is 
1.25 years. Of course, it is less than the original dataset has shown, but still good enough 
for 200 records 30 minutes each, as the method allowed extrapolating data from 100 hrs 
to 10,000 hrs. 
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a) Alternative set a) Alternative set 2 

Figure 3.40 Theoretical solution and extrapolated estimate averaged for the alternative data set. 
Set I: Range 7.5-8.5 m; l45points for the threshold 8.5 m 

Set 2: 7.5-8.6 m; 146 points for the threshold 8.6 m 

3.4.Summary 

The main difficulty associated with characterizing the likelihood of a large toll 
angle occurring is related to the problem of rarity. The nonlinearity of the dynamical 
system describing large roll motions of a ship creates additional difficulties. The natural 
frequency of roll of a ship changes as a function of roll amlitude. This frequency shift 
makes the response significantly different for small and large-amplitude motions. These 
difficulties are overcome by separating the problem into "non-rare" and "rare" sub- 
problems. The "non-rare" sub-problem is based on relatively small-amplitude motions. 
Its solution provides the rate of upcrossing a threshold, a boundary that separates small, 
almost linear motions from moderate and large-amplitude motions, where nonlinearity is 
significant. This threshold is the boundary between the "non-rare" and "rare" sub- 
problems. The non-rare problem was considered in the section 1 of this report. Further 
work is focused on "rare" problem. 

The solution of the "rare" problem is based on the statistical properties of the data 
points above the threshold. The idea is to use them to predict large angles, as the 
influence of nonlinearity is already significant above the threshold. Among the data 
points above the threshold, the peaks are of special interest and they can also be 
considered for Poisson flow. It can also be shown that reaching a peak above the 
threshold is an event equivalent to upcrossing of this threshold. 
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A distribution that is fit to the peaks over the threshold is a conditional 
distribution. This conditional distribution describes the probability that, once the 
threshold is crossed, a higher level is crossed. This constitutes the solution of the "rare"' 
problem. The distribution may also be considered as an extreme value distribution, in 
which case the maximum values from fixed length windows are used in place of the 
peaks. The extreme value distribution describes the behavior of the tail of a distribution 
and may therefore provide more accurate extrapolation. Averaging results obtained with 
several thresholds also seem to improve the accuracy of the method. 

120 



4. Envelope Theory 
This section examines the properties of the envelope and then considers its 

application, along with upcrossing theory, as a method of evaluation of the probability of 
rare events. 

4.1.Definition and Background 

As it was demonstrated in the Section 1, a violation of Poisson flow is caused by 
too many crossings of neighboring periods. This is especially pronounced when the 
spectrum is narrow, which leads to significant grouping or clustering. Such a situation 
may be typical for following and stern quartering waves when the encounter spectrum 
can become very narrow. Envelope theory may be useful in these cases. Belenky and 
Breuer (2007) show an example of successful application of the envelope for the case of 
parametric roll, a process known for its narrow spectrum. 

Most Naval Architecture applications dealing with irregular waves use a Fourier 
presentation of a stochastic process: 

x(t) = £rmcos((i)lt + (pl) (4.1) 
• 

Here, (o, is set of frequencies used for discretization of the given spectral density, r», is 
amplitude of the /-th component and q>, is a phase shift for the x component. If a process 
is normal, like in the case of elevations of irregular waves, amplitudes of components arc 
taken from a spectrum, while phase shifts are considered as a set of independent random 
numbers with uniform distribution from 0 to 360 degrees. 

The concept of the envelope came from envelope presentation, which is an 
alternative way to describe the time history of a stochastic process: 

x(f) = tf(0cos(<D(0) (4.2) 

Here the process .r(/) is presented through two other stochastic processes: 
amplitude or envelope a(t) and phase <£>(t). Originally the envelope presentation was 
developed for a stationary normal processes (Rice, 1944, 1945); the principles it is based 
upon may, however, be extendible to non-Gaussian processes as well. The role of phase 
<t>(/) is keeping the "memory" of the process; it makes sure that the presentation (4.2) 
does not alter the autocorrelation function of the process x(t). The role of the envelope 
(a(t)) is to ensure the variance is maintained, see (Belenky, et al 2006) where an example 
application of the envelope presentation is shown. 

Formally, the envelope is defined through a complementary stochastic process. It 
is y(t) is defined as: 
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y(t) = Ytrmsin((olt + %) (4.3) 

The stochastic processes x(/) and v(/) are not correlated if the time is fixed, as the 
correlation moment at the fixed time is zero, since the phases were shifted 90 degrees (if 
the process x(t) and v(t) are normal they are also independent at the fixed time). 
However, the values of the processes may be correlated if they are taken at different 
instances of time. The operation of obtaining the complimentary process is known as 
Hilbert Transform. 

The envelope a(l) is defined as: 

a(t) = y[7 + y~ (4.4) 

The envelope is a stochastic process with its own autocorrelation function and 
distribution that differs from the distribution of x(t) and v(/). 

Further considerations rely on the same numerical example of wave elevations. It 
is described in detail in section 1. Figure 4.1 shows the envelope along with the process, 
it was derived from. The negative reflection of the envelope has been added for better 
visualization. Figure 4.1 makes clear the origin of the term "envelope". The actual 
envelope and its negative reflection cover the entire process and serve as its outer 
boundary. 

Figure 4.1 Stochastic process of wave elevations and its envelope. Negative reflection of the envelope 
is added for visualization only 

A closer look reveals that the envelope is not just a smooth curve that connects 
the peaks of the process. It accounts for negative peaks (case A in Figure 4.1). Sometimes 
the envelope has a peak when the process itself has neither negative nor positive peak 
(case B in Figure 4.1). The origin of this "unclaimed" peak of the envelope can be 
clarified by plotting the complimentary process y(t) along with the original process x(t) 
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and its envelope, see Figure 4.2. It becomes clear that the peak of the envelope can be 
also caused by the peak of the complimentary process. 

Moreover, it is possible to show that all the points of the envelope are, in fact, 
peaks of the process x(t) shifted by an angle. Consider a process z(t): 

:(/|Y) = £/-|(.cos((0,/ + (p, -y) (4.5) 

Here y is the shift angle. Figure 4.3 shows the shifted process _(/) along with original 
process x(t) and complimentary process y(t). Each peak of the shifted process z(t) belongs 
to the envelope. This provides a graphical interpretation of the envelope and explains the 
origins of its peaks. 
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Figure 4.2 Origin of peaks of envelope: original stochastic process .v(t) and its eomplimentar) process 
>(t) 

HI 

-10 

• 4'ly=3w/2) 

210 220 230 240 250 

Figure 4.3 Envelope and peaks of the shifted process 
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4.2.Outline of the Theory of the Envelope 
This subsection examines an outline of the basics of the theory of the envelope for 

a normal process. It is assumed the process x(t) is normal and has zero mean value, but it 
does not limit generality, as it is always possible to introduce a shift. Consideration 
generally follows the classical text by Sveshnikov (1968). 

4.2.1.   Distribution of the Envelope and the Phase 

The complimentary process v(/)< as the result of Hilbert transform, can also be 
expressed as: 

y{t) = X'V, sin<°V + 9i) = 0(Osin(O(O) (4.6) 

Assumption of normality is extended to the complimentary process y(t). It is 
naturally followed if Fourier presentation (4.1) is used for the original process x(t) and 
uniform distribution of phases of components is assumed. 

Consider a probability that the envelope takes a particular value. Taking into 
account (4.4), it can be expressed in a form of the following inequality: 

a<,Jx2 + y2 <a + da (4.7) 

The probability of satisfying the inequality (4.7) is directly related with the PDF 
of the envelope/(o): 

p(a < y].x2 + r: < a + da)= f(a)da (4.8) 

The probability (4.8) can be evaluated if the joint distribution of.v and v is known: 

f(a)da = P\a < ^x2 + y2 <a + da)=      Jjf(x,y)dxdy (4g) 

Here/(x,v) is joint distribution of the original process and its complimentary process. As 
a normal distribution was assumed for both of them the joint distribution is expressed as: 

i 

f(*>y)=—i    /    , v CX
P 

x-     2r xy    v- 

2n^Vv{\-r2yXP{2{l-r2{K     JvjT    Vy j 
(4.10) 

Here Vx and Vv are variances of the original and complimentary process, respectively; rxy 

is the correlation coefficient of the original and complimentary processes: 

The variances of the original and complimentary processes are identical. Taking 
into account presentation (4.1) and (4.3): 
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(4.11) 

As noted in the previous subsection, the original and the complimentary processes 
are not correlated, as the shift between them is 90 degrees. It can be clearly seen for the 
known formula for the correlation coefficient between two processes expressed with 
Fourier series: 

I 
r   = 

V*X  • 
2lrm cos(A<p,) = -p= 2/,,., cos((p, -(cp, -0.5TI)) = 

V^T< 

W/, X'„,COS(0.5TT) = 0 

(4 12) 

Here A(p, is the difference between phase of components. For the details of derivation of 
this formula, see (Belenky & Sevastianov 2007) or (Belenky, et al, 2007). 

Taking into account (4.11) and (4.12), the distribution (4.10) can be simplified. 

f(x,y) = 
2nV 

-exp 
( ji .    2 N x  +y 

V 
(4 13) 

Substitution of the distribution (4.13) into (4.9) and transition to polar 
coordinates yields: 

f(a)da =        [[f(x,y)dxdy = 
aiijx  • v <tn da 

U   exp 2nV. 
ti£-Jx' • V" <"iJ i Ju 

x + y 

r> 
dxdv = 

a = yjx2 + y2     x = acos(<t>) 

<X> = arctanj — ]    y = a sin(O) 

(4.14) 

2nV 

' mi     _ n 

I     \a exp 
' a 

'      a       (• KKJJ 
dO da 

At the same time, consider /(a) as a marginal distribution of the joint distribution f(a.<t>): 
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a+tlu     2n 

f(a)da=   J    jf(a,0)dOda (4.15) 

This joint distribution /(a,<t>), then is expressed as: 

cl 
/(a,4>) = ——exp 

f     i A    2 AA a 

V    * V r x J 
(4.16) 

The right-hand side does not contain the variable O. It means that the variables a and <t> 
are independent. The PDF of a can be found by the integration of (4.16) by ct> from 0 to 
2%. 

2n 

f(a)= j/(a,<D)dtD = -^-exp 
V^ 
&» 

(4.17) 

This distribution is known as a Rayleigh distribution. 

The distribution of the phase can be easily found from the formula (16) using 
the established fact of independence of envelope and phase: 

f(a)      2n 
(4.18) 

The phase in the envelope presentation (4.2) follows unformed distribution from 0 to 2n. 
This concludes consideration of PDFs of the envelope and the phase. 

4.2.2.   Autocorrelation Function of the Envelope 

To find autocorrelation function of the envelope, the joint distribution of two 
values of the envelope a(t) and a(t+x) need to be obtained first. This can be done through 
four-dimensional distribution of values x and v at the time instances / and t+t. Consider a 
system of four random variables: 

U = (x(t),x(t + x),yit),y(t + x)) (4.19) 

These random variables are values of the original and complimentary stochastic 
process and in two time instances, / and t+x. As processes x and y are normal, all four 
variables have normal distributions. The processes x and v are independent; that means 
that the variables x{t) and y(t) are independent as well as the variables x(t+z) and v(/+x). 
It does mean, however, that the variables .v(/) and v(/+x) are independent. Vice versa, 
they are dependent and their correlation coefficient is expressed using formula (4.12) as: 
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Ill 
1   v'" 1   v 

(x(t),y(x+T))=—2,^COS(O)/T-0.5TC)=—J/isinfox) (4 20) 
t <=i i i 

A similar conclusion can be reached for another "cross-pair" of the random variables 
x(t+x) and v(/): 

m(x{t + z),y(x)) = —^r^cos((o,.T + 0.5TI) = -—Yr^ sin((o,x) (4 21) 
2KV W 2^ w 

It is convenient to express these figures as: 

I    \„ 
r(T) = -m{x(t + x),y(x)) = m{x(t),y(x + x)) = —-£r„:, sin(<o(i) (4 22) 

Dependence between random variables x{t) and ,V(/+T) as well as between y(t) and 
y(t+x) can beexpressed through an autocorrelation function of the processes v and v, 
which in the considered case is identical to the application of formula (4.12): 

in 
1 

{x(t),x{x + x))=—]£#£ COS((O,T) (4 23) 

m{y(t), y(x + x)) = — £ r£ cos((o,x) 

It is convenient to express these figures as: 

(4 24) 

k(x) = m(x{x).x(t + x)) = m{y(t),y(x + x)) = — jV^cosfox) (4 25) 

In fact k(x) is the normalized autocorrelation function that is the same for the processes 
x(t) and;•(/). 

The relationship between these variables is summarized with    the following 
covariance matrix: 

C(T) = FV 

1 A-(T) 0 r(x)^ 

jfc(x)       1 -/•(!)      0 

0 -r(x) 1 k(x) 

/-(T)           0 A(T)           1 

(4 26) 

All these variables have a normal distribution; therefore dependence between them 
is completely characterized by the correlation expressed by the covariance matrix (4.26). 
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Next, their joint distribution is completely defined by the following 4-variate normal 
distribution: 

/(£/) = 
i 

(27r):Vdet(C) 
cxp -U'CAU 

(27r):Vdct(C) 
exp 

4      4 

-TII^'W 
V    <• ;=i i=\ 

(4.27) 

Here the superscript T stands for the transpose operation. It converts a vector-column into 
vector-row. C ' is an inverse covariance matrix. It is expressed as: 

C'(T) = 
I 

Vx-p{xf 

1 -k(x)       0 -r(x) 

-k(x)        1 r(x) 0 

0 r(x)         1 -A(T) 

-r(x)        0 -A-(T) 1 

(4.28) 

Here: 

p(x)2=\-k(xf-r(x)z 

The determinant of covariance matrix is: 

det(C(x))= Vx
4(\-k(x)2 -r(x)2J = V*p(xf 

(4.29) 

(4.30) 

Substitution of the formulae (4.28) and (4.30) into (4.27) leads to the following 
expression for the joint distribution of considered random variable: 

f(U) = 
(2xVKYp2 exp 

1 

I   2VlP 
~\x\ + }'\ + x] + y\ -2A'(.v,.v; + y, v,)-2r(.r, v; + )\xz) 

(4.31) 

To avoid a bulky formula, the following nomenclature was used in formula (4.31): 

x] = x{t) ;   x2 = x{t + x) 

v, = v(/) ;   y2 = V(/ + T) 
(4.32) 

Formula (4.31) describes probability density in the four-dimensional space with 
coordinates x\, xi, vi, yi. The next step is to re-write in the polar coordinates defined as 
follows: 
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a = ^x2+y2     x = acos(<t>) 

O = arctan y = «sin(0) 
(4.33) 

The new coordinates are: 

o, =a(t) ;    a2 =a(l + t) 
(4 34) 

To complete the transition, two pairs of rectangular coordinates (jti, n) and (.V;, y2) are 
substituted with (a\, d>i) and (c/2, <t>:). Then the expression needs to be multiplied by a\ a^ 
as the element of the area in the polar coordinates a c/<t> da. 

/(a,,a2,0„<D2) 
a, a, 

—exp 
I 1     / , 
 7 la, +a, - 

{2nVx)
2p2     \   2P\pX 

-2/:a,a-,cos(0: -O, )-2ra,a, sin(0,    O,))) 

The expression (4.35) can be further simplified by the substitution: 

y = arctan 

(4 35) 

rr\ 

V « / 

/(a,,fl2,0,,<I),) 
{2nVjp ^TexP 

2Vxp 
Y\aj + a2

2 - 

(4 36) 

(4 37) 

2a}a2iJ\-p2 cos(cD2 — cD, -y)) 

The next step is to obtain the joint distribution of a\, ai. It can be done by 
integration of the distribution (4.37) twice by Oi and <X>i. 

/(<*„a2) = -J-^- f fexp -        2(d?+al - 
KP a { 2vxP 

'2a}a2-yJ\- p2 cos(02 -O, -y)\fit>^JO, 

The integration can be completed: 

(4.38) 

a]a2 /(a,,a2) = -^-exp 
a," + a; 

2KP2 
KP: (4.39) 
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Here I0 is the zero-order modified Bessel function of the first kind (Abramowitz and 
Stegun 1972). 

Finally, the autocorrelation function can be obtained from the PDF (4.39) using its 
definition: 

Ra(t)= ||/(oP«2)(a, -maXa2 -ma)daxda2 (4.40) 
(l o 

Here ma is a mean value of the envelope. As it was shown that the envelope follows the 
Rayleigh distribution, the mean value is known: 

ma = \aj\a)da = — ja2 exp - - ^-    da = JoJnVx (4.41) 

The integration results in the following formula for the autocorrelation function: 

/?,(T) = Kr(2E(l- p2)- p2K(\- P
2
)-0.5K) (4.42) 

Here E and K are elliptic integrals of the first and the second kind: 

E(x)= /-==£===;    K(x)= iJl-x-sm-zdz (4.43) 
o Vl -x-sin" z n 

An example of the calculation of the autocorrelation function of the envelope, as well as 
its comparison with a statistical estimate, is given in the subsection below. 

4.2.3.   Distribution of the Derivative of the Envelope 

The theory of the envelope also offers the PDF of the derivative of the envelope. 
This result may be important for an application of the upcrossing theory to the envelope. 

To find the distribution of the derivative of the envelope, the joint distribution of 
the envelope and its derivative need to be found first and then integrated from zero to 
infinity by the value of the envelope: 

X 

f{a)=\f{a,a)da (4.44) 
0 

The joint distribution of the envelope and its derivative can be derived from the joint 
distribution of two values of the envelope (4.39). This problem can be classified as 
multivariate probability transformation, when the distribution of one random vector is 
derived from the distribution of the other random vector. It also implies that these random 
vectors are related to the deterministic vector valued function. 
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a(t) 

a(t + x) 

( „ \ 
or 

<a^ 

\ai) 
(4.45) 

Generally, a derivative is defined as a limit: 

<:/(/) = lim 
ait + x)-a(t) 

or   a, = hm- 
a-, -a, 

T    ><> 

(4.46) 

Formula (4.46) represents a component of a vector-valued deterministic function of a 
random vector; the other component is obvious: 

<v 
Va:/ 

a 

lim —  
(4 47) 

Since the first component of the function (4.47) maps ci\ into itself and does not depend 
on x, the symbol of limit can be applied to the entire function: 

_"i 

,a2j 

lim 
r->0 

a, 

a2 -a, 
V    x    ; 

(448) 

Assume that x is small. Then introduce approximation for the function (4.48): 

V '<0 
V«2 7 

a, - a, 

v 

(4 4')) 

The formulation of the problem of multivariate probability transformation is 
completed. Its solution is welWcnown from the general theory of probability (see. for 
example, Goodman, 1985): 

f\ava,)^J$*)\fip;{ax,a2\%{ax,a2)) (4 50) 

Here the vector valued function T* is an inverse to the vector valued function E* and .1 
stands for the determinant of Jacobean matrix. 
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V 
\a2j 

= H> 
V 
\a\j 

a 

y^+O.Xj 
(4.51) 

The second component of the inverse function (4.51) was formally derived from the 
second component of (4.49): 

a, = E2(a1,ar2) 
fl, -a. 

o    a, = a, + a.x = ylia^a.) p"i. (4.52) 

However, it is also follows from the assumption that x is small: 

a(t + x) = a(t) + xd(t)    or    a2 = a, + xa, (4.53) 

The determinant of the Jacobean matrix of the inverse function is expressed as: 

•/(¥*) = det 

gyrcgpoj   dy.'Cflpfl,)^ 
da, fa, 

d*K(a,,a,)    54/,*(fl„fll) 
fa, 5a, i      / 

= det 
1    0 

0  t, 
= I (4.54) 

Substitution of (4.54) and (4.51) into (4.50) lead to the following expression for the 
approximate joint distribution: 

/'*(a,,al) = T/'(a1,al+a,T) (4.55) 

The exact distribution of the envelope and its derivative is actually a limit of 
(4.55) when t tends to zero: 

/"(a,, a,) = lim/*(a,,a,) = lirnxfia^a, +a,i) 
T-»0 T-»0 

Substitution of (4.39) into (4.56) yields (index 1 may be dropped now): 

(4.56) 

xa(a + xa) 
f(a,a) = hm ^—;—exp 

t~>0      Vx~P~ 

la +2aax + a x 

2Vxp- 

a(a + xa)-y]\ - p~ 
T\ (4.57) 

To carry out the limit transition in the formula (4.57), p needs to be considered in 
more detail as it is a function oft, see formula (4.29), repeated here for convenience: 
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p(x): = 1-*(T)
2
 -/-(x): 

The function k(x) is a normalized autocorrelation function. It was defined by the 
formula (4.25), which is based on discretization of spectrum with frequency set to,, 
/'=1,..,/V(... Formally, it is the cosine Fourier transform of the spectral density s{io): 

k(x) = — J.V((O)COS((OT)<:AO (4.58) 

The function r(x) is a normalized cross-correlation function. It was defined by 
formula (4.22) based on the same discretization. It is a result of sine Fourier transform of 
the spectral density: 

r{x) = — rv((o)sin(o)TV(o 
I 

(4.59) 

Figure 4.4 shows the functional) along with normalized autocorrelation function 
k(x) and normalized cross-correlation function r{x) calculated for the numerical example. 

/'(T) 

T. S 

^fr^ 40 so 60 

-\J- 

Figure 4.4 Function p. normalized auto- and cross-correlation functions 

As it can be seen from Figure 4.4 the function p(x) tends to zero with the decrease of time 
duration T. TO describe behavior of this function near zero, it is convenient to expand it 
into the Taylor series about the zero point (actually, then it is Maclaurin series): 

p(x)2 =/,(0):+i/?(0):T + ^/;(0)V+.. (4.60) 

Consider each term of (4.60): 
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p(0)2 = \-k(0)2-r(0)2 =1-1-0 = 0 (4.61) 

p(Q)-=^-(\-k(z)2-r(T)2)      =-2(*(T)A:(T) + r(T)r(T))| (4.62) 
dx IT=0 

p(0)2=^-(-2k(T)k(z)-2r(x)r(x)) 
dx 

= - 2(k(z)k(T) + k(x)2 + r(t)r(T) + r(T)2 )| 
r  li 

(4.63) 

Values of the auto- and cross correlation at T = 0 are expressed as: 

*(0) = 1 ;  r(0) = 0 (4.64) 

Derivatives of the auto- and cross-con-elation functions are: 

I x 1  ' 
k(x) = — U((o)cosin(coT)j(o ;  k(x) = m(o)(o~ cos((oi)c/co (4.65) 

V V ^ 
A   () ' x   0 

1   r 1   ' 
r(x) = [.v(co)(ocos(coT)dco ;   r(x) = —- f.v(co)co2 sin((ox)t/(o (4.66) 

r x  0 v   0 

The values of these derivatives at x = 0 are expressed as: 

k(0) = — Js(to)cosin(coT = 0)cfa> = 0 (4.67) 
**  0 

r(0) = j.v((o)cocos((ot = 0)Jco = j.s(co)cot/co = co, (4.68) 
v  0 v  o 

The value - r(0) is the mean frequency coi as determined from the spectral density. 

1   '                                             1 "i 

k(0) = j.">(co)(o2 cos(coi = 0)d(o = p(to)co2c/co = -co2 (4.69) 
"x 0 x 0 

The  quantity   -k(0)   has  a  meaning  of the  second  moment  of the  spectral  area, 

normalized by the variance. Its usual nomenclature is co2. 
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1 \ 
/•'(()) = j.?((o)(0: sin((ot = 0)d(o = 0 (4 70) 

v   0 

Formulae (4.61) through (4.70) allow us to express the expansion (4.61) near T = 0 as: 

p{ T): = 0 - T(*(0)*(0) + r(0)r(0))- 

-z2(k(0)k(0) + k(0)z +r(0)i:(0) + r(Qf )+...« 

== -x(l • 0 - 0 • co,)- T
:
 (- 1 • co2 - 0 - 0 + co2) * T

:
 (<O; - to,2) 

(471) 

The above derivation completed with formula (4.71) allows making an important 
conclusion of the behavior of the function p(x) near T = 0. 

limp(i)2 = lim T2
 (to2, -co,2) (472) 

Consider behavior of the argument of the Bessel function in (4.57) near x - 0: 

a(a + xa)yj\- p(x)2 ~T\ 

lim 
i->n Vxp{xf 

= nm 
a(a + xa)yj\ -T2(to2 -to,2) 

rr(co;-co2) 

= lim 
t->0 

a Ml 
\ 

(4 73) 

F T
:
 (co2 - co2)   Vx T(CO; - co2) , 

= oc 

Using the known quality of the modified Bessel function of the first kind: 

liml„(.v) = 
1 

4~2 KX 
exp(.v) (4 74) 

This  allows  substituting  the   Bessel   function   with   its  approximation   in   the 
formula (4.57): 

f(a,a) = lim 
T-+0 

xa{a + xa) P(*)yfi\ 
VxP(x)    yJ2Ka(a + xa)i]\-p(x)2 

exp 
a x 

2*><T)-J 
exp 

a{u + ax) 

vxP(rt 
exp 

a(a + xa)^\- p{x) 

~KPWT 

7 \ 
(4.75) 

// 

Substitution of the approximation (4.71) for the function /;(T) into the equation (4.75) 
allows completing the evaluation of the limit: 
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a f(a,a) = —e\p a 2   \ 

WJJIKVM-**)     V   2KxW-«af) 
(4.76) 

The structure of formula (4.76) reveals independence of the envelope and its 
derivative (see formula (4.17)). This is, actually, an expected result. Since the process x is 
stationary, its envelope also can be expected to be stationary; and the stationary process is 
independent of its derivative. 

f(a,a) = f(a)f(a) 

Finally the distribution of the derivative is expressed as: 

(4.77) 

f(o) = 
^^(coj-wf)      I    2Kv(wj-cof) 

(4.78) 

It is a normal distribution with zero mean and the following variance: 

(4.79) 

4.2.4.   Numerical Example 

The envelope is a stochastic process; therefore it makes sense to start its 
numerical exploration by comparing its statistical estimate of the autocorrelation function 
with its theoretical counterpart (4.42). 

The values of the envelope were computed for each time step with formula (4.4). 
The estimate of its mean value is expressed as: 

•V.   N 

m, - ZI>v N N *-? *-?  " 
(4.80) 

Calculation of the estimate of the autocorrelation function may encounter 
significant difficulties for larger values of time due to insufficient data. Averaging of the 
estimate over the records alleviates this problem (Belenky et al 2007): 

1      v«        J       AM 

'VR   j=\ li      J   H 

j = l,JV;   j = l..NR-   k = l..N-\ 

(4.81) 

Figure 4.5 shows theoretical autocorrelation function of the envelope (4.42) and 
its statistical estimate (4.81). Although in-depth statistical analysis was not performed, it 
is clear from this figure that both the shape of the autocorrelation function and its time of 
decay are fairly close. 
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RJK Theoretical autocorrelation function of the envelope 
OOO  Statistical autocorrelation function of the envelope 
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Figure 4.5 Normalized autocorrelation functions of the envelope 

As an ultimate purpose of using the envelope is upcrossing, it makes sense to 
check the distribution of the envelope and its derivative. This can be done using Pearson 
chi-square goodness-of-fit test. However, in order to use this test, all the points included 
in the sample must represent independent data. The points a, are dependent, as the 
process of the envelope has a certain memory represented by the autocorrelation function 
shown in Figure 4.5. To provide the goodness-of-fit test with independent data, Belenky 
el al (2007) used a skipping procedure, with the time interval sufficient for the 
autocorrelation function to decay. In this case it may be about 30 seconds, which 
corresponds to 60 steps. So only one point over 60 steps is included in the sample. 

Figure 4.6 and Figure 4.7 show the distributions of the envelope and its 
derivative, respectively. The results of Pearson chi-square goodness-of-fit test were 
included in these figures. As it can be seen the test was passed in both cases. 

The goodness-of-fit test does not reject the theoretical distributions. It means that 
the theory of envelope was correctly interpreted and applied in this case. 
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Figure 4.6 Distribution of the envelope 
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Figure 4.7 Distribution of the derivative of the envelope 

4.3. Application of the Theory of Upcrossing to the Envelope 

To obtain the theoretical upcrossing rate, distributions of the envelope and its 
derivative need to be substituted into the general formula for the upcrossing rate of a 
stationary process: 

Xe=f(a = b)jaf(a)da = 

= —exp 
V. 

0 

I 2K)!^2KV,(ml-m;)    "    2K, (c* - tf) 

a \ 

b 
=—exp 

V. 

(    b2^ 

2K 
\vx((o;-(o;) 

In 
exp 

a 
2Kv(ay; -oof) 

o ) 

- h H-^)  ( *2 

27i Kv 

exp 
2F 

(4.82) 

Here, 6 is the level of crossing. 

Evaluation of the statistical estimate of the upcrossing rate does not differ from 
the procedure described in Section 1. Numerical results are shown in Figure 4.8, the 
theoretical value and statistical estimates agree as the theoretical value is inside of the 
confidence interval. 
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Figure 4.8 Theoretical and statistical rate of upcrossing of the envelope. Level of crossing h 9 in. 
total number of upcrossing is 302 
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Following the method developed in section 1, applicability of Poisson flow has 
been tested for 9 m crossing level, see Figure 4.9. As seen from this figure, the 
observation of upcrossing of the envelope does not reject Poisson distribution. 
Calculations for different levels are summarized in Table 7. As seen from this table, the 
upcrossing of the envelope stops following the Poisson flow somewhere between the 
levels of 7 and 7.5 m. This is actually higher than the process itself. As it was shown in 
the section 1, the Poisson flow lost applicability between the levels 5.25 and 5 m. 

0.8T ee© Theoretical mass probability function x"=l 621) d=3 P(x:.</)= 0.653 
OOO Based on Average Number per Unit of Time x"= 1.63 d=2 P{'/C J)   0.443 

Crossing level 4 m 
Total 302 upcrssings 
Number of time windows per record V„   5 
Duration of time window 7*=360 s 
Volume of sample 1000 
Lstimate of mean value mk =0.302 
Estimate of variance \\    2^11 
Ratio m// Vk'= 1.0375 

A 

0 12 3 4 

Figure 4.9. Probability mass function of number of upcrossing of the envelope during time window 

Obviously using the envelope in this case does not help with application of 
Poisson flow for the lower levels. However, the numerical example used so far 
considered waves derived from a Bretshneider spectrum. It is a model for fully developed 
waves in unrestricted waters and the spectrum is not exactly narrow. This situation 
changes completely when the encounter spectrum in following or stern-quartering waves 
is considered. This is the content of the next subsection. 
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Table 7. Evaluation of applicability of Poisson flow for the upcrossing by the envelope 

E 

> 

"3 « 
M .9 
E  2 =  p 
z S 

K tnkJVk N 1 "max Pearson chi-square test for Poisson distribution based on 

Formula (83) Averaged number of erossing 

x: d P(X2-cf) z: d p(r.d) 

11 31 1 0.958 3 0.8147 2 0.665 0.5251 1 0.469 

10 108 1 1.1 4 4.210 3 0.2396 3.239 2 0.198 

9 302 5 1.0375 4 1.629 3 0.653 1.63 2 0.443 

8 787 10 1.047 4 1.6636 3 0.645 1.382 2 0.501 

7.5 1224 25 1.0111 I 0.6589 3 0.8828 0.301 2 0.8605 

7 1799 25 1.0683 4 4.4345 3 0.024 9.0013 2 0.01 11 

6.75 2210 25 1.1008 4 15.4754 3 0.0015 15.8483 2 0.0004 

6.5 2632 25 1.135 4 25.1708 3 1.42E-5 25.9098 2 2.36E-5 

5 6121 40 1.5325 4 554.98 3 0 561.14 2 0 

4.4. Effect of Speed and Wave Direction 

4.4.1.   Encounter Spectrum of Waves 

The wave excitation acting on a ship depends on speed and wave direction, even 
if the consideration is limited by Fourde-Krylov forces and moments. The effect is caused 
by the relative motion of the wave and the ship. It is a particular case of the Doppler 
effect, when the frequency is increasing when the source of a signal and a recipient of a 
signal move towards each other and decreasing of frequency when they move away from 
each other. This effect is known in Naval Architecture under the term of encounter 
spectrum that becomes wider in the head and oblique waves and narrower in the 
following and stern quartering seas. 

The calculation of the encounter spectrum and its effect on ship motions are 
described in details by Kobylinski and Kastner (2003). Calculation of the encounter 
spectral density se can be carried out using the series of formulae below: 

(0 
(0 . - co Vs cos P 

g 
(4.83) 

Here coc. is the frequency of encounter, to is the true wave frequency p is the wave 
heading angle and Vsihe speed of the ship (in m/s, if S.I. is used). 

140 



•*,K) = 

*,,(©,.)+Jrt(<D,)+se3(a>r)   //'   a), < 8 
4Fscosp 

0   //    co, > 
4KvcosP 

// cos(P) > 0 

-2^-FyCOsp 
g 

t/ cos(p) < 0 

(4.84) 

With the following expression for the parameters: 

•v(./,) ,_   I-VDKT 

l-2AFs.cosP 2^C0SP 
g 

,v(/;) l + VD(cot) 

g 

-2^-K,cosP 
g 

2F,cosP 

(4.85) 

D(w )-l-4^^cosP;    D,(w ) = l + 4^^cosp 
g g (4.86) 

Figure 4.10 shows the encounter spectrum calculation for the numerical example 
(see subsection 1.2.3) calculated with formulae ((4.83)-(4.86)) for pure following waves 
(p=0) and speed of 15 knots. The dramatic effect of speed and wave direction is very 
vivid. 

These calculations are much simpler for the case when a spectrum is already- 
presented in amplitude and the frequency of components; the new set of frequencies 
consists of absolute values of the encounter frequencies (4.83): 

•*<') = Z/H<cos(k.l'+(p.) (4 87) 
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Figure 4.10 Encounter (red) and true (blue) spectra of wave for pure following waves (p*=0) and 
speed of 15 knots 

4.4.2.   Time History and the Envelope 

The time history of the 19th record is shown in Figure 4.11. The upper part (a) of 
the figure shows the original process "recorded" by a fixed "gauge". The lower part (b) 
is "recorded" by a "gauge" moving in pure following waves (P=0°) with a speed of 15 
knots. There is a significant visual difference between these two time histories. The effect 
of speed and direction leads to appearance of groups or clusters. These clusters may 
create problems with Poisson flow. If there is one upcrossing, the next period is very 
likely to have one too. This breaks the requirement of the independence of these events as 
the autocorrelation function still has significant numbers after one period. 

At the same time the autocorrelation function decays at a significantly slower 
pace: compare Figure 4.12 with a similar figure from section 1. The autocorrelation 
function in Figure 4.12 keeps some values even at the end of the record. It is a result of 
the "moving" gauge; there may be a component that moves with celerity very close to the 
"gauge",. Itmay take a very long time (up to eternity) for such a component to pass the 
"gauge", and therefore its influence can be felt for such long time. As a result, it is not 
obvious, how long it takes for the autocorrelation to die out; if such a parameter is still 
required, it can be set based on practical consideration such as "when the autocorrelation 
function peaks become less than 10%". For this example it takes 400 seconds. 

Figure 4.13 shows the same record 19 along with its envelope and makes visual 
yet another effect of speed and direction: the envelope becomes a slowly changing 
process in comparison with the wave elevations even "recorded" by the moving "gauge"'. 
This effect is actually expected, as the spectrum becomes narrow- banded. 
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Figure 4.11 Time history of the record 19 of the numerical example nave for zero speed (a) and for 
pure following waves O=0) and speed of 15 knots (b) 
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Figure 4.12 Ensemble-averaged normalized autocorrelation function, evaluated for the entire length 
of a record (a) and zoomed out in the first 200 seconds (b) for the process of wave elevations recorded 

from a "gauge" moving in following seas with the speed of 15 knots 
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1800 

Figure 4.13 Time history of the record 19 of the numerical example wave for pure following waves 
((3=0) and speed of 15 knots with the envelope. The zoomed in fragment shows how the envelope 

becomes slowly changing process. 

4.4.3.   Applicability ofPoisson Flow 

The most dramatic effect the speed and heading is on the applicability ofPoisson 
flow. As it was noted above, string clustering of periods leads to similar clustering of 
upcrossings that violates the independence requirement and renders Poisson flow 
inapplicable. Figure 4.14 shows distribution of the time interval between the upcrossings. 
As expected none of the hypotheses is supported by the data. The histogram does not 
resemble exponential distribution at all. The first bin is much taller than the other bins, 
showing that the distribution is dominated by the time interval close to the mean 
encounter period (22 s). These calculations were done for the crossing level of 7.5 m 
where without the influence of speed and heading, the applicability of the Poisson flow 
did not raise any doubts, see Figure 1.21. 

The direct test of the applicability of Poisson flow (Figure 4.15) also rejects the 
hypothesis. This distribution is also dominated by the first bin, corresponding to zero 
number of upcrossing during the time window. The height of the second bin is almost 
equal to the third and the fourth. It means that the number of cases when one, two, or 
three crossings are almost equal. In the case of Poisson distribution they are expected to 
decrease with the number of crossings. 
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Figure 4.14 Distribution of time intervals between upcrossing for pure following waves speed 15 
knots, level of crossing 7.5 m 

These calculations were carried out systematically tor the crossing level tanging 
from 11 m down to 5.5 m and compared with the similar calculation for the envelope. 
The results are summarized in Table 8. There was no level where the Poisson flow could 
be applied to the process of wave elevations recorded from a "gauge" moving in the 
following seas with the speed of 15 knots. 

At the same time, applicability of the Poisson flow to the envelope is easily 
achievable and it is good all the way until the level between 6.25 and 6.5 m. This is very 
close to the result obtained in section 1 for the wave elevation "recorded" by a fixed 
"gauge". Therefore the envelope can be used for detecting upcrossing events when the 
spectrum is narrow and Poisson flow cannot be applied directly to the process. 

Theoretical mass probability function x"=5321 tf 6 P(x:.t/)= 0 
Based on Average Number per Unit of Time x"=6670 d=5 P(x~.it)= 0 
Based on Average Time between Crossings x"=642 d=5 P(x~-<t)= 0. 
Based on Average Censored Time before 1st Crossing x:=4007 d=5 P(x:.</)= 0. 
Based on Average Uncensored Time before 1st Crossing x~-l 1384 d=5 P(x'-tf) 

Crossing level 7.5 ra 
Total 420.   147 records had at least one crossings 
Number of time windows per record ,V„=10 
Duration of time window fi=180 s 
Volume of sample 2000 
Estimate of mean value mk'=0.2\ 
Estimate of variance Vk =0.4041 
Ratio m// K»"=0.5197 

^*te 
4 

  -f   * 

Figure 4.15 Probability mass function of number of upcrossing during time window for pure 
following waves speed 15 knots 
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Table 8. App icability of Poisson flow for the case of following 
envelope 

waves with 15 knots • the process vs. its 

level Wave elevations 1 he envclo IC 

N
um

be
r 

of
 

cr
os

si
ng

s N¥ mi/Vk N "max 
Pearson chi-square 
test If 

II 
Z   g 

,v„. rHk/Vk N "max 
Pearson chi-square 
test 

• 
X P(XV/) T P(T.iI) 

11 6 1 0.6 3 34.23 3.6879E-8 5 1 1.02 2 0.256 0.8798 
10 24 1 0.61 3 49.49 1.795E-11 16 1 1 82 2 1.721 0.4231 
9 75 1 0.56 5 56.76 1.386E-11 55 1 1 097 3 2.218 0.6958 
8 24" 3 0.469 7 611.89 0 168 1 1 1538 5 1.997 0.92 
7.5 420 3 0.45 7 695.41 0 262 2 1 0522 5 1.418 0.9647 
7 683 10 0.488 1 4155.1 0 373 3 1 079 5 3.794 0.7045 
6.75 854 10 0.4902 7 3879.0 0 459 4 1 119 5 5.540 0.4766 
6.5 1044 10 0.4874 7 2447.3 0 542 4 1 131 5 6.214 0.3997 
6 25 1296 15 0.539 7 1227.4 0 647 4 1 1463 5 7.445 0.2817 
6 1571 15 0.5305 7 1220.0 0 740 4 1 19 5 13.32 0.0383 
5.75 1894 15 0.5312 7 1221.7 0 862 4 1 ^s 5 36.978 1.7781E-6 
5.5 2284 15 0.5407 7 1121.9 0 992 4 1 432 5 43.539 9.1214E-8 

4.5. The Envelope Based on Peaks 

4.5.1.   Appearance and Distribution for Zero-Speed Case 

As it was shown earlier in this section, the peaks of the envelope do not 
necessarily correspond to the peak of the real process. It can be seen in Figure 4.2 and 
Figure 4.3. Thus the effect is much less pronounced when the spectrum is narrow like in 
the case of waves "recorded" by a "gauge" moving in the same direction (pure following 
waves) with the speed of 15 knots, see Figure 4.13. 

Consider an approximation for the envelope that does not produce artificial peaks; 
each upcrossing of the level then must correspond to at least on upcrossing by the process 
itself. Such an approximation can be achieved by a piecewise linear function using 
absolute values of peaks of the process as nodes. Figure 4.16 shows this approximation 
along with the true envelope, with a zoomed in picture shown in Figure 4.17. As it can be 
seen from Figure 4.17, the true envelope oscillates about piecewise linear approximation. 
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Figure 4.16 Peak-based or piece linear approximation of the envelope; shown for the record # 19; 
true envelope is shown with the dotted line. The wave is "recorder" from a fixed point. 
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Figure 4.17. Zoomed in peak-based or piece linear approximation of the envelope; shown for the 
record # 19; true envelope is shown with the dashed line. The wave is "recorder" from a fixed point 

Distribution of the peak-based envelope is shown in Figure 4.18. The current 
value of the peak-based envelope is calculated linearly between the nodes. Comparing the 
histogram with the theoretical Rayleigh distribution, one can find visual similarity. 
However, the Pearson chi-square goodness of fit test does not support this hypothesis. 
Numerical disruptions caused by linear interpolation seem to be statistically significant in 
this case. 
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Figure 4.18 Distribution of the peak-based envelope for the zero-speed case. Skip 30 seconds 

Calculation of the distribution of the derivatives was carried out as follows. The 
cubic spline with free ends was fit to run through the peaks of the process 
(Forsythe, et al 1977): 
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>' = v, + b, {x - x,) + c, (x - x, f +di{x- x. )3 (4.88) 

Here (x,>>;) are coordinates of the nodes, b,, c„ d, are spline coefficients. Once the spline 
was fitted, the derivative can be expressed as: 

v' = /),+2c,(x-.v,)+3c/,(.v-x,)2 

The values of the derivative in each node simply are: 

yl=b, 

(4.89) 

(4.90) 

The values of the derivative outside of the nodes were calculated with linear 
interpolation at each time step. The distribution of the derivatives of the peak-based 
envelope is shown in Figure 4.19. Theoretical distribution (4.78) is not supported by the 
Pearson chi-square goodness of fit test. Visually, however, the distribution seems to be 
normal but would be characterized by significantly less variance. 
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Figure 4.19 Distribution of the derivatives peak-based envelope for the zero-speed case. Skip 30 
seconds 

Piecewise linear approximation of the envelope further refereed as a peak-based 
envelope allows us to avoid artificial peaks that could be found in the true envelope. 
Every peak of this approximated envelope corresponds to the upcrossing of the level by 
the original process. However, in the case of zero-speed, the numerical disruptions 
introduced by the approximation lead to a deviation of the distribution of the peak-based 
envelope and its derivative from the theoretical PDFs. 

4.5.2.   Appearance and Distribution the Peak-Based Envelope for Narrow 
Spectrum 

For the process of encounter waves described by the spectrum in Figure 4.10, the 
appearance of the peak-based envelope is shown in Figure 4.20. The peak-base envelope 
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becomes visually indistinguishable from the true envelope. The zoomed-in image in 
Figure 4.21 still shows a very small difference between the two envelopes. Actually this 
is an expected result. Once the spectrum is narrow, the envelope becomes a slowly 
changing curve in comparison with the original process. Curvature of the true envelope 
decreases, therefore accuracy of its approximation with the broken line increases. Figure 
4.22 and Figure 4.23 show the distribution of the values of the peak-based envelope and 
its derivative. Both figures were calculated in the same way as in the previous case with 
zero-speed. Skip time was 140 seconds as the autocorrelation in following waves dies out 
slower (see Figure 4.12). As it could be expected both histogram support theoretical 
distributions. 

As it has been seen from the above considerations the peak-based envelope 
represents a much better approximation for the case of the narrow spectrum in 
comparison with the case of zero-speed. 
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Figure 4.20 Peak-based or piece linear approximation of the envelope; shown for the record # 19; 
true envelope is shown with the dotted line. The wave is "recorded" by the "gauge" moving with the 

waves (pure following seas) with the speed 15 knots 
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Figure 4.21 Zoomed in peak-based or piece linear approximation of the envelope; shown for the 
record # 19; true envelope is shown with the dashed line. The wave is "recorded" by the "gauge" 

moving with the waves (pure following seas) with the speed 15 knots 
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Figure 4.22 Distribution of the peak-based envelope for the following wave case and speed of 15 
knots; skip 140 seconds 
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Figure 4.23 Distribution of the derivative of the peak-based envelope for the following wave case and 
speed of 15 knots; skip 140 seconds 

4.5.3.   Upcrossings of Peak-Based Envelope 

Statistical estimates for the rate of upcrossings of the peak-based envelope are 
shown in Figure 4.24 for both zero-speed (a) and the following wave cases (b). The 
confidence interval for the estimates was evaluated assuming binomial distribution (see 
subsection 1.2.2). For the zero-speed case, the estimate of the upcrossing rate does not 
contain theoretical values inside the confidence interval. Similar to the results with 
distributions (see Figure 4.18 and Figure 4.19), numerical disturbances introduced by the 
linear interpolation caused the observed difference. Following the same tendency, 
upcrossing rates of the true envelope and peak-based envelope for the following wave, 
15-knots case are statistically identical. 
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Figure 4.24 Theoretical and statistical rate of upcrossings of the true and peak-based envelopes. 
Level of crossing A=7.5 m, zero speed case (a); following waves with speed 15 knots (b) 

Significant statistical difference between the theoretical upcrossing rate of the true 
envelope and statistical estimate of the upcrossing rate of the peak-based envelope also 
reflect the statistical significance of the artificial peaks of a true envelope. 

Nevertheless, these numerical disturbances did not much affect the Poisson 
character of upcrossings. The distribution of the number of upcrossings during a given 
time window remains Poisson for both considered cases of upcrossing of the peak-based 
envelope, see Figure 4.25. 

Table 9 contains results of calculations for systematically changing the crossing 
level to see where applicability of Poisson flow breaks down for the peak-based 
envelope. These calculations were carried out for both cases: zero-speed and following 
waves / 15 knots (narrow spectrum). Histograms were compared with the probability 
mass function calculated with the statistical rate of upcrossing, as the theoretical 
distribution is no longer applicable for the zero-speed case. Using the level of 
significance of 0.05, one can see that the boundary of applicability of Poisson flow lays 
somewhere between 7 and 7.5 m for the zero-speed case and between 6 and 6.25 m for 
the following wave case. These number are essentially are the same for the true envelope, 
see Table 7 for the zero-speed case and Table 8 for following wave case. Thick lines are 
used in these tables to show the boundary applicability. 

Comparing the number of upcrossings for the true and peak-based envelope, the 
significant difference existing for the zero-speed case could be expected, as numerical 
discrepancies were significant enough to change the distribution. The difference in the 
number of upcrossings for the following sea case is much less, but the numbers are not 
identical, despite that there were no visual differences in the appearance of peak-based 
and true envelope for the following sea case. 
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Total 1019 crossings 
Number of time windows per record V„=8 
Duration of time window Tk=225 s 
Volume of sample 1600 
Estimate of mean value mk =0.6369 
Estimate of variance \\"=0.6029 
Ratio m// Vk '=1.0564 
X2=l.87d=3P(xV)=0.6 

Total 271 crossings 
Number of time windows per record ,V„ = 
Duration of time window 7^=900 s 
Volume of sample 400 
Estimate of mean value mk =0.6775 
Estimate of variance Vk =0.6775 
Ratio mk'/Vt'= 1.0753 
X2=l.76d=3/>(x\</)= 0.625 

Figure 4.25 Probability mass function of number of upcrossing during time window of the peak- 
based envelope for zero speed case (a) and pure following waves speed 15 knots (b); crossing level 

7.5 m 

Table 9. Applicability of Poisson flow for i jpcrossing of peak-based envelope 
level Zero-speed case Followinj ; waves 15 knots 
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X" P(r.J) X' P(x:-</) 

11 20 1 1.05 2 0.21 - 5 1 1.021 2 3.1E-3 - 
10 83 1 1.079 4 1.89 0.39 16 1 1 082 2 0.1 - 
9 243 4 1.059 4 2.41 0.30 53 1 1 077 3 0.18 0.6749 
8 620 8 1.073 4 2.85 0.245 170 2 1 036 4 1.0356 0.7209 
7.5 1019 8 1.056 5 1.87 0.60 271 2 1 075 5 1.76 0.6247 

7 1520 8 1.2 5 19.93 0.0002 387 4 I 11 5 5.89 0.1 172 
6.75 1841 2d 1.11 5 19.13 0.0003 463 4 1 125 5 6.78 0.0791 
6.5 2217 20 1.15 5 32.98 3.2547E-7 550 4 1 126 5 4.71 0.1946 
6.25 2695 20 1.196 5 54.82 7.504E-12 659 4 1 159 5 6.54 0.0882 

6 3131 20 1.2621 5 92.78 0 750 4 1 199 5 10.3 0.0162 
5.75 3655 25 1.348 5 189.78 0 873 4 1 401 5 38.37 2.3558E-8 
5.5 41 S3 25 1.4093 5 243.0 0 1014 5 1 403 5 44.03 I.4892E-9 

4.6.Summary 

Envelope theory describes the presentation of a stationary stochastic process via 
two other stationary stochastic processes: the amplitude and phase of the envelope. Most 
of the theoretical results of envelope theory are applicable only for a normal process; 
however some principles of envelope theory can be used for the stationary process with 
any type of distribution. 
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The envelope contains the absolute values of all of the peaks of the original 
process. The peaks of the envelope, however, do not necessarily belong to the original 
process (artificial peaks). 

A portion of envelope theory was reviewed here, including the marginal 
distributions of amplitude (Rayleigh) and phase (uniform distribution), the 
autocorrelation function of the envelope, and the distribution of the derivative of the 
envelope (normal). Numerical examples demonstrated successful reproduction of the 
theoretical results. 

Treating the envelope as a stationary process allows the application of the 
upcrossing theory. It is possible to obtain the closed-form solution for the upcrossing rate 
of the envelope if the original process is normal. This result was verified numerically. 

Upcrossings of the envelope follow Poisson flow, if the crossing level is high 
enough and upcrossings can be treated as independent random events. 

The spectral bandwidth of the process has a significant influence on the em elope. 
If the spectrum is narrow, the envelope becomes a slowly changing function in 
comparison with the original process. It was demonstrated with another numerical 
example of encountered waves; the wave elevations were virtually "recorded" by a "wave 
probe" moving in the same direction as the waves (pure following seas) with a speed of 
15 knots. 

It was shown that for the encountered waves Poisson flow is no longer applicable. 
Due to significant clustering or grouping, all of the upcrossings become dependent on 
each other. 

A piecewise linear approximation of the envelope was considered (the peak- 
based envelope). The approximation contains only actual peaks of the process and all 
other points are calculated by linear interpolation between peaks. 

Numerical discrepancies introduced by such approximations lead to the 
inapplicability of the theoretical solution for the distribution and upcrossing rates for the 
envelope in the original wave example (zero-speed case). However, all theoretical results 
were applicable for the following wave, 15-knots case. 

The applicability of Poison flow was not affected by the approximation. 
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5. Envelope Peaks over the Threshold 
This section describes a method of statistical extrapolation using probabilistic 

properties of the peaks of the envelope exceeding a given threshold. 

5.1. Both-Sides Crossings 

5. /. /.   Large Roll Event as Both-Sides Crossing 

Partial stability failure in the form of large roll event is equally dangerous on 
either side of a ship. Therefore, a random event of upcrossing is not yet a complete model 
of partial stability failure. A complete model of the partial stability failure should include 
both upcrossing of a specified level on the positive side and downcrossing of the 
specified level on the negative side. This random event can be written as: 

X = ((<|>(/) < a)f] (<j>(/ +dt)>o))U ((<!>(/) > 6)11 (<t>(/ + dt)<b)) (5.1) 

Here, X is a random event associated with partial stability failure; a is a positive level of 
exceedance and b is negative level of exceedance. Obviously, if the mean value of roll is 
zero then requirements are the same for the both sides: 

if{m{$) = 0)=>a = -b (5.2) 

Consider a probability of both-sides crossing in a particular instant of time /. As it 
is known from upcrossing theory (and has been demonstrated earlier in this report) this 
probability is infinitely small: 

dP(X)= p{((ni) < a)n(4>u + dn > o))u((<i><o > Mn (¥' + <m < &)))      < 5.3) 

The roll process is single-valued (has only one value at the same instant of time), 
therefore it cannot cross two distinct levels simultaneously and the events of upcrossing 
of the level a and downcrossing the level b at the time instant t are incompatible: 

p{{{^(t)<a)n(^(t+dt)>a))n({m>b)n{w+dt)^b)))=o (5.4) 

Therefore: 

JP(X) = P{(Mt) < a)C\(¥t + dt)>a))+ P{(<b(t) > b)n{4>(( + dt) < b)) (5.5) 

Since dt is an infinitely small increment, equation (5.5) can be presented as (value at the 
instant / is assumed and the symbol (/) is dropped): 
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dP{X) = P(((j) < a)f] (<)> + Wl > a))+ P(((J> > b)f] (((> + W * b)) = 

= p(^<a)f]^>a-^d())+p({^>b)f](<\><b-yt)) (  '6) 

It is obvious that upcrossing occurs with positive roll rate and the downcrossing 
with the negative roll rate: 

dP{ X) = P({§ < a)f] (<$>>a- <j*//)n (<j> > o))+ 

+ P({i»b)f](<\><b-^t)f]^<0)) (5'7) 

If the joint distribution of roll and roll rate   /(()),<)))  is known, the probability can be 
expressed as: 

<JP(X)=   I  f/(<|»>«j>)4^+   }   |/(<j),(i))44 (5.8) 

Both external integrals in the equation (5.8) have limits that are infinitely close to 
each other. Then application of the mean value theorem (for integration) yields the 
following: 

X (I 

dP(X) = dt J/(a,<j>)<j>4-dt \f(b,k)¥k (5.9) 
0 -x 

Assuming that the roll motion is a stationary process leads to independence of the 
process value and its first derivatives: 

/(M) =/(4>)/(<j>) (5.10) 

This circumstance allows rewriting the equation (5.9) as: 

dP(X) = dt 
f DO 0 

f{a)\fWM-f{b)\f{k)¥k (5.11) 

The expression in parenthesis is finite and represents a rate of the random event of 
both-sides crossing: 

dP(X) = Xi,hdt 

(5.12) 
\* =/(«) J/(4oW-/@) J/(<t>)<M> 

Compared with formula (1.19), it is easy to see that the first component is actually 
a rate of upcrossing through the level a. It can be shown the second component represents 
the rate of downcrossings: 
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xa = /-(fl)j/(<i»<ik/<j) 

(5-13) 

The rate of downerossing is aetually always positive as the value of the integral is 
negative. 

If the distribution of the roll rate is symmetrie, the integrals in (5.13) have the 
same absolute value, but different signs: 

k.=/(«)J/(W4;   A.,=/(*oJ/(<j>)<MJ>   if   /(<j>) = /H>) (5.14) 
o (i 

Finally if the roll proeess has zero mean, its distribution is symmetrie and for 
b = -a: 

\aA=2Xa=2X6=2/(a)J/(<j>)<M>   if   h = -a   f]   f$) = /(-<j>)       (5.15) 
0 

In particular, for the generic normal process .v(/): 

(5 16) 
71 V V, 

(        :  N a 

2V 

Statistical estimates of the both-sides crossing can be obtained as averaged 
number of crossing of both sides per unit of time: 

..      m\ + m'n 
K>=      T (5 17) 

Here m{  is an estimate of the mean value of the number of upcrossings through the level 

a and mD is an estimate of the mean value of the number of downerossings through the 
level /?, TR is the duration of the record. 

5.1.2.   Confidence Interval for Both-Sides Crossings 

Following the same steps as in the case of upcrossings. consider a sample of 
stochastic process x, presented in a form of an ensemble of NK records. Each record is 
represented by a time history ofNpr points with the time step A/, totalling n= Npr\ time 
steps. Then the event of both-sides upcrossing of the level a can be associated with a 
random variable D defined for each time step as follows (see Figure 5.1): 
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Figure 5.1 Auxiliary random variable for both-side crossing 

Total number of both-sides crossings: 

^=XIX (5-19) 

Estimate of probability that a both-sides crossing will occur at any given instance 
of time: 

.      N, 
PD 

nNR     nNR , 
(5.20) 

Mean number of both-sides crossing per record: 

*    N»       '   VVn 
N      N  ^1^-1 iy R iv«   '=1   H 

(5.21) 

Estimate of rate of both-sides crossing also can be expressed through the 
characteristics of an auxiliary variable: 

m 1       "   v" 

Mf     wA^ A/ M 7^ 
(5.22) 

Evaluation of the confidence interval for the estimate of the rate of both-sides 
crossing encounters certain methodological difficulties. The method of evaluation of the 
confidence interval, described in the Section 1, was based on the binomial distribution of 
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the auxiliary variable. The binomial distribution assumes Bernoulli trials, which implies 
the independence of the consecutive events. If the level is high enough, the upcrossings 
are independent events; as a result of that, the time between them has an exponential 
distribution and the number of these upcrossings during a finite duration of time has 
Poisson distribution. Consecutive both-sides crossings can be as close to each other as a 
half a period. This is not enough time for the autocorrelation function to die out. therefore 
the neighbor both-sides crossings may be dependent. 

On the other hand, if time is fixed, all of the events are independent as the records 
are independent. In this case, conditions of Bernoulli trials are satisfied and the 
distribution of the auxiliary variable is binomial. The independence of the event in the 
time section, however does not necessarily lead to the exponential distribution of time 
between events or Poisson distribution of a number of events during fixed time, as these 
figures require temporal consideration and do not exist in the time section. 

Binomial distribution depends on the probability of the event occurring at a 
particular instant of time estimated by formula (5.20). Averaging over the time section 
(averaging over all the records at the given instant of time) and temporal averaging both 
are present here. This allows for mitigating possible errors in the evaluation of the 
confidence interval. Further evaluation was done in a similar way as describes in the 
section I. 

Figure 5.2 shows this estimate calculated for the numerical example. The crossing 
level is ±9 m; as the process used in the example has zero mean and normal distribution 
(wave elevations), formula (5.16) was used for the theoretical value. As it is clearly seen 
from this figure the theoretical value is included in the confidence interval of the 
estimate. Therefore, the derivations above, and the formula (5.16) in particular, are not 
rejected by the numerical example. 
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Figure 5.2 Both-sides crossing rate: theoretical value and statistical estimate by counting. Crossing 
level ±9 m 
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5.1.3.   Applicability ofPoisson Flow to Both-Sides Crossing 

Theoretical derivation and statistical estimation of rate of both-sides crossing was 
very similar to upcrossing. However the random event of both-sides crossing hardly can 
be expected to follow the Poisson flow because crossing of one side may be too close in 
time to the crossing of the other side for the independence condition to appy. 

This can be very clearly seen from the numerical example considered through and 
this report. As it was shown in the Section 1, the Poisson flow becomes applicable to the 
upcrossing event when the level of crossing exceeded a value between 5.25 and 5.5 m 
while the autocorrelation function could be considered to have died out after about 40-45 
seconds. The mean time between crossings was somewhere between 75 and 89 seconds; 
this provided enough separation between events to consider them independent. 

For the both-sides crossing, time between crossing one side or another can be as 
small as a half of zero-crossing period. For the considered example it is only about 5.8 
seconds, which is obviously not enough to ensure independence. However, it is possible 
that applicability of Poisson flow may be preserved for the very high levels, where a 
statistically significant number of cases with only one-side crossing can exist. 

To check the hypothesis above, a series of calculations for systematically changed 
levels was performed for the considered numerical example. Using the method described 
in the subsection 1.3.5 and keeping the maximum number of crossings per windows 
around 7-9 (if possible), the boundary of applicability was determined to be between 10 
and 10.5 m, see Table 10. 

Table 10. Test on applicability of Poisson flow for both-sides crossings 

E 
-H 

> 
to | 

11 
Z  g 

.V,,. m/Vk N. • 'max Pearson chi-squarc test for Poisson distribution based on 

Formula (5.16) Averaged number of crossings 

X" d P(X2.if) z: d P(t\d> 

12 3 1 1.01 2 0.9491 1 0.33 0.0007 0 - 
11.5 9 1 1.04 3 0.5928 2 0.74 0.212 1 0.6452 
11.0 22 1 0.93 3 0.9024 2 0.64 0.92 I 0.3359 
10.5 54 1 0.85 4 7.0184 3 0.07 4.38 2 0.1119 

10.0 101 1 0.76 5 38.895 4 7.3E-8 25.062 3 1.50E-5 
9.5 179 2 0.77 6 51.8343 5 5.8E-10 40.66 4 3.16E-8 
9.0 307 2 0.73 6 30.142 5 1.38E-5 28.99 4 7.85E-6 
8.5 517 2 0.87 7 13.4984 6 0.0358 13.6851 5 0.0177 
8.0 860 4 0.75 7 65.106 6 4.10E-12 67.867 5 2.85E-13 
7.5 1441 12 0.65 7 370.7 6 0 391.1 5 0 
7 2266 18 0.66 8 505.2 7 0 542.1 6 0 
6.5 3514 36 0.65 7 1011 6 0 1068 5 0 
6.0 5354 36 0.66 7 1015 6 0 1031 5 0 
5.5 7676 36 0.6969 8 900.0 7 0 904.39 6 0 
5.0 10852 36 0.734 8 875.86 7 0 870.56 6 0 
4.5 14860 36 0.8186 9 666.76 8 0 665.69 7 0 
4.0 19482 36 0.9532 9 496.39 8 0 494.97 7 0 
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The outcome of the direct Poisson applicability test of the both-sides crossings 
can be sensitive to the windows size. Results of calculations shown in Table 11 were 
obtained with the specific purpose to take the method beyond its breaking point. A 
similar procedure was carried over for upcrossing in Section 1; there it was found that the 
results of direct applicability test were not sensitive to the size of window. Behavior of 
the both-sides crossings was found to be different and the results are sensitive to windows 
size. 

At all the levels (with exception of 9.5 m), the applicability of Poisson flow was 
not rejected if the larger windows were used. Fractions in the column of number of 
windows (marked Nw) mean that the window was of a larger duration than a record. For 
example Nw=\/4 means that four records makes one window, while A/,, = 12 means that 
each window uses one record on its full length and 20% of length of the next record. 

Results in Table 11 cannot be explained other than as a numerical artifact. 
Properties of Poisson flow cannot be supported if the events are not independent. It was 
quite clearly seen from a number of calculations discussed in Section 1; once events are 
too close to each other, while the autocorrelation functions have not died out yet, the 
hypothesis of Poisson flow was clearly rejected. To verify that results in Table 11 are. in 
fact, a numerical artifact, another method of testing was applied. 

Table 12 shows the results of a Kolmogorov-Smirnov goodness-of-fit test (K.-S 
test) applied as described in Section 1. Its application is completely justified if a 
theoretical distribution is used; however it may be too "optimistic'* on the statistical fit, as 
it does not have a mechanism to apply a penalty for statistically estimated parameters (see 
Section I). Results in Table 12. however, do not show large differences in judgment on 
the applicability of Poisson flow to both-sides crossings. 

Table II. Test on applicability of Poisson flow for both-sides crossings (Increased window size) 

£ 

-H 
u > u 

A .s 

11 

K mt/Vk N Pearson c hi-square test for Poisson distribution based on 

Formula (5.16) Averaged lumber of crossings 

X d l\X.d) x: d i'<y;.J> 

12 3 1/4 1.0426 2 0.7626 1 (I.3S 0.11 - 
11.5 9 1/4 0.94 4 0.6459 3 0.8859 0.2322 i 0.8904 

II 0 TI 1/4 0.88 4 0.7307 3 0.866 0.7651 i 0.6821 

10.5 54 1 4 1.0652 4 4.7329 3 0.1924 1.7518 ~> 0.4165 

10.0 101 1/4 1.0206 8 10.4581 7 0.1641 5.137 6 0.5264 

9.5 179 1 0.82 -: 24.615 6 0.0004 16.963 5 0.0046 
9.0 Mr 1 0.88 8 7.4806 7 0.38 6.9313 6 0.3272 

8.5 517 1 1.1 8 2.3842 7 0.9356 2.3616 6 0.8836 

8.0 860 1 1.2 10 12.4697 9 0.2549 11.5471 8 0.2401 

7.5 1441 1 1.21 16 11.0447 15 0.7494 10.9491 14 0.69 

7 2266 1.2 0.8675 21 26.3937 20 0.1532 21.2171 19 0.3249 

6.5 3514 1.2 0.9172 27 21.9401 26 0.692 17.6174 25 0.9172 

6.0 -" W 1.2 1.0115 37 29.276 36 0.7788 26.1945 35 0.8588 

5.5 7676 2 0.9526 33 40.97 32 0.1329 34.0338 31 0.3236 

5.0 10852 2 1.0136 41 28.7651 40 0.9068 26.5423 39 0.9356 

4.5 14860 5 1.1773 54 34.3761 53 0.9779 34.4415 52 0.9712 

4.0 19482 3 1.1015 4^ 18.68 46 0.999 19.0462 45 0.998 

161 



Table 12. Kolmogorov-Smirnov test on applicability of Poisson flow for both-sides crossings 

E 

-H 
3 > 

N
um

be
r 

of
 

cr
os

si
ng

s 

Formula (5.16) Averaged number of cross ngs 

u 

si 
2 '-a 

o g 

25 

•a 
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—    -si 

£1 

o 
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2^5 

o   o 
si 
25 Pr

ob
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ili
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th

at
 f

it 
is
 g

oo
d 

12 3 0.0139 0.0241 i 0.0057 0.0099 1 

11.5 9 0.0147 0.0442 i 0.0067 0.0202 1 
11.0 22 0.0151 0.0706 i 0.0108 0.0507 1 
10.5 54 0.0229 0.1682 i 0.0216 0.1589 1 
10.0 101 0.0201 0.2024 i 0.0503 0.5053 0.9604 
9 5 179 0.0558 0.747 0.6323 0.0785 1.0496 0.2205 
9.0 307 0.0709 1.2419 0.0915 0.0754 1.3212 0.0609 

8.5 517 0.0904 2.0553 0.0004 0.0812 1.8461 0.0022 
8.0 860 0.1046 3.0662 I.3648E-8 0.0878 2.5759 3.4488E-6 
7.5 1441 0.1187 4.5071 0 0.109 4.1374 2.66E-15 
7 2266 0.1235 5.8811 0 0.1094 5.2094 0 
6.5 5514 0.1314 7.7869 0 0.1193 7.0746 0 
6.0 5354 0.1302 9.5234 0 0.1258 9.2021 0 
5.5 7676 0.1249 10.9419 0 0.1174 10.2896 0 
5.0 10852 0.107 11.1445 0 0.1036 10.7952 0 
4.5 14860 0.081 9.8696 0 0.0804 9.7988 i) 

4.0 19482 0.0579 8.0867 0 0.0569 7.9386 0 

The theoretical distribution (5.16) and statistical fit both provide applicability of 
Poisson flow above a level located between 8.5 and 9 m. This is somewhat lower than the 
boundary found by the direct test of applicability of Poisson flow in Table 10, where it 
was between 10 and 10.5 m. Such a discrepancy, however, has been observed when 
applying both tests to just one-side upcrossing in Section 1. 

The direct test of the applicability of Poisson flow seems to be more conservative 
than the K-S test. However, in the case of both-sides crossing, it may give the wrong 
answer if the size of the window is too large. To ensure reliable judgment of applicability 
of Poisson flow, the direct test needs to be complemented by the K-S test. 

5.1.4.   Relation between Both-sides Crossing and Absolute Value of Peaks 

Consider a sample of stochastic process .v, presented in a form of an ensemble of 
NR records. Each record is represented by a time history of NPT points with the time step 
At, totaling «= Npr-\ time steps. Then the event of occurrence of a peak, exceeding a 
given threshold or the level a, is associated with an auxiliary random variable Z defined 
for each time step as follows (see Figure 5.3): 
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/ = !,..,«;   j = l,...,NH 

(5.23) 
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Figure 5.3 Auxiliary random variable for peak over the threshold 

This random variable Z is defined analogously to the auxiliary random variable !). 
see the previous subseetion. Following the same logic, the total number of all crossings is 
just a sum of the values of the auxiliary variable for all time steps for all records: 

(524) 
M   y=l 

An estimate of the probability that a peak exceeding the threshold will occur at 
any given instance of time: 

N2 th, nNR     nNR ,=, .=I 
(525) 

The mean number of peaks over the threshold per record: 

M 1      "   v« 
(5 26) 

The rate of events for the peak over the threshold can be introduced analogously 
to the rate of upcrossing. Its estimate over a finite volume of data is defined as: 

A. n„T    — ' 

1 
"PoT nAl     nNRAt w 

(527) 

While the theoretical definition can be obtained as a result of a limit transition for 
the infinite number of records and infinitely small time step: 
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*>roT = Jim Xp»T = Jim 

n->x 
A/->0 

*^A/ lim 
R   M   7=1 

]   ,.      NZ      1   ..       .     c//?7 
lim -   - = — lim p7 =—— 

(5.28) 

dt *»-**• nN„     dt N 

The discussion of applicability of binomial distribution for the auxiliary variable 
Z follows the same thread as for the auxiliary variable D in the case of both-sides 
crossings. Figure 5.4 shows an example calculation at the level/threshold ±9 m. As it can 
be seen from that figure, the estimate of the rate of peaks over the threshold is statistically 
identical to the estimate of the rate of the both-sides crossing. The theoretical result for 
the rate of the both-sides crossing is not rejected by either of the estimates. 
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Figure 5.4 Both-sides crossing rate: theoretical value and statistical estimate by counting vs. rate of 
peaks over the threshold. Crossing level ±9 m 

Figure 5.5 shows a comparison between the theoretical values of the both-sides 
crossing rate, its estimate by-counting, and the estimate of rate of the absolute value of 
the peaks. The points and the curve practically coincide. The confidence interval was too 
tight to plot on the figure. 

To show the confidence interval, a log scale was used, see Figure 5.6. Even in the 
log scale the confidence interval remains too tight to be drawn, with the exception of the 
level 10 m and higher. To avoid any further cluttering, the smallest of the two upper 
boundaries was shown for the upper limit, while the largest of the lower boundaries was 
shown for lower limit. All the numbers are also shown in Table 13. 
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Figure 5.5 Theoretical value both-sides crossing rate (red curve), statistical estimate of hoth-sides 
crossing rate by counting (circles) and statistical estimate of rate of absolute value of peaks over the 

threshold (crosses). 
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Figure 5.6 Theoretical value both-sides crossing rate (red curve), statistical estimate of both-sides 
crossing rate by counting (circles) and statistical estimate of rate of absolute value of peaks over the 

threshold (crosses). 
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Table 13. Both-sides crossing rates and rates of peaks 
Crossing 

level / 
threshold. 

m 

Theoretical 
both-sides 
crossing 

rate 

Estimate of both-sides crossing rate Estimate ol rate of absolute value of 
peaks 

low mid upper low mid upper 

4 0.0543 0.0539 0.05412 0.0554 0.05417 0.05439 0.05568 

4.5 0.04134 0.04102 0.04128 0.04234 0.04131 0.04156 0.04264 

5 0.03049 0.02988 0.03014 0.03101 0.03013 0.0304 0.03127 

5.5 0.02177 0.02106 0.02132 0.02201 0.02126 0.02152 0.o:2:i 

6 0.01506 0.01462 0.01487 0.01542 0.01479 0.01504 0.01559 

6.5 0.01009 9.54E-03 9.76E-03 0.01018 9.66E-03 9.88E-03 0.01031 

7 6.54E-03 6.10E-03 6.29E-03 6.62E-03 6.I9E-03 6.39E-03 6.71 E-03 

7.5 4.11E-03 3.84E-03 4.00E-03 4.25E-03 3.90E-03 4.07E-03 4.32E-03 

8 2.50E-03 2.25E-03 2.39E-03 2.58E-03 2.31 E-03 2.45E-03 2.64E-03 

8.5 1.47E-03 I.33E-03 1.44E-03 I.58E-03 1.36E-03 1.47E-03 1.61 E-03 

4 8.4IE-04 7.67E-04 8.53E-04 9.58E-04 7.86E-04 8.72E-04 9.78E-04 

9.5 4.65E-04 4.31E-04 4.97E-04 5.78E-04 4.44E-04 5.1IE-04 5.921.-04 

10 2.49E-04 2.31E-04 2.8IE-04 3.39E-04 2.36E-04 2.86E-04 3.44E-04 

10.5 1 29E-04 I.I4E-04 1.50E-04 1.92E-04 I.14E-04 I.53E-04 1 97E-04 

II 6.47E-05 3.61 E-05 6.11 E-05 8.89E-05 3.89E-05 6.39E-05 9.17E-05 

11.5 3.14E-05 1.I1E-05 2.50E-05 4.17E-05 1.11 E-05 2.78E-05 4.72E-05 

12 1 48E-05 0 8.33E-06 1 94E-05 0 8.33E-06 1.94E-05 

Looking at the numbers in Table 13, one can confirm that estimates of the rates of 
the absolute value of peaks over the thresholds are statistically identical to estimates of 
the both-sides crossing rate. Both estimates include the theoretical value for the both- 
sides crossing rate into their confidence intervals. Therefore, statistics of the absolute 
value of peaks over the threshold can be used to characterize events of both-sides 
crossing. 

5.2.Theoretical Solution for Both-sides Crossings 

The theoretical solution for the upcrossing problem was readily available. It is not the 
case for the peak-based envelope. At the same time, the approximate theoretical solution 
is needed to verify the extrapolation method being developed. 

5.2.1.   Distribution of Absolute Value of Peaks 

The total number of peaks (both positive and negative) found in the wave 
elevation sample data set was 62,135. The absolute value of a peak is defined as: 

X
Peak       \X\fpeak peak Ww)-o) (5.29) 

Figure 5.7 is a histogram of absolute values of peaks superimposed with Rayleigh 
distribution. The histogram is somewhat similar to the distribution of positive peaks (see 
section 3); however, it cannot have any negative values by the definition (5.29). It shows 
larger values in the vicinity of zero in comparison with the histogram of positive peaks; 
the value of the first bucket is well above 0.1, while the first bucket of the positive peaks 
is below 0.1. 
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Figure 5.7 Histogram of absolute values of peaks of wave elevations with superimposed Rayleigh 
distribution 

Obviously, the absolute values of peaks do not follow a Rayleigh distribution. 
This result can be explained in a wave, similar to the case of positive peaks. The reason 
why a Rayleigh distribution is inapplicable as a whole, is existence and statistical 
influence of secondary peaks. It is known that number (and statistical influence) of 
secondary peaks depends on the spectrum bandwidth. As it was already mentioned in the 
section 3, peaks of a normal process with "moderate" bandwidth follow a Rice 
distribution. Once the bandwidth becomes very large, the autocorrelation function dies 
out very quickly and the process becomes effectively white noise. If there is no 
autocorrelation, peaks are encountered totally randomly; they become distributed just like 
any other value of the process. Therefore, for the limit case of the spectrum bandwidth, 
the peaks take a normal distribution. The other limit case is a very narrow spectrum. As 
it was mentioned in Section 3, the distribution of peaks of narrow-banded process follows 
Rayleigh. It also can be explained by the fact that the narrow spectrum makes the 
envelope a slowly changing function, and the variance of the zero-crossing period 
becomes very small. It also means that there are very few secondary peaks; they become 
statistically insignificant. The envelope contains all of the peaks; sampling the envelope 
with almost constant step makes the peaks keep the distribution of the envelope, e.g. 
Rayleigh distribution. This was demonstrated in Section 3 for the positive peaks of wave 
elevations recorded from the moving gauges (encounter wave sample). 

Similar to the distribution of positive peaks, the distribution of absolute values of 
peaks follows a truncated Rayleigh distribution (see Section 3) starting from a certain 
bucket. 
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/*(") = kM)y exP 
/ 2   A a 

v  2Kj 
a > a, (5.30) 

Here k„{a,) is normalization coefficient calculated at the truncation value a,. The 
following formula was derived in Section 3 for the truncation coefficient: 

(    2 A 

*„(*,) = exp ^7 
{2V*J 

(5.31) 

Substitution of formula (5.31) into formula (5.30) gives the following expression 
for the truncated Rayleigh distribution: 

a l    2 2.\ (a -a, ) 
f„(a) = —exp - a > a, (5.32) 

The cumulative distribution is expressed as: 

F„(a) = I-exp - 
2V. 

a> a, (5.33) 
v J 

The truncated Rayleigh distribution and truncated histogram are shown in Figure 
5.8; the value of truncation has been chosen to pass Pearson chi-square goodness-of-fit 
test. The results of the Pearson chi-square goodness of-fit test are also shown in Figure 
5.8. 

The explanation is similar to the one given in Section 3. Secondary peaks are 
relatively small. Large peaks are primary peaks; therefore they belong to the envelope. It 
is also known from the theory of the envelope that conditional variance of the period 
decreases when the amplitude increases. This means that large-amplitude oscillations 
have periods very close to the mean period; the illustration of this effect can be seen in 
the appendix to (Belenky and Bassler 2010). Again, if the peaks belong to the envelope 
and are sampled with almost a constant step, they keep the distribution of the envelope, 
e.g. Rayleigh distribution. 

Consider the sample with a narrow spectrum (see Section 4), created by the wave 
elevations "recorded" with a "gauge" moving in the same direction with the waves 
(following encounter waves). It was shown in Section 3 that the distribution of its 
positive peaks is closer to Rayleigh; the positive peaks start following truncated a 
Rayleigh distribution from the amplitudes of 0.54 m, while for the "zero-speed" case for 
this value was l.5l m. 
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Figure 5.8 Histogram of absolute values of peaks and truncated Rayleigh distribution 

A similar picture can be observed for the absolute value of the peaks. There were 
32,717 peaks in total. Figure 5.9 shows a histogram of absolute values of peaks for 15- 
knot case of the encounter waves. Visually, the hypothesis of Rayleigh distribution looks 
very plausible. However, the Pearson chi-square goodness-of-fit test rejects the 
hypothesis, because of the first two buckets. 
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Figure 5.9 Histogram of absolute value of peaks for the case with forward speed 15 knots and 
Rayleigh distribution 

As it could be expected, the truncated Rayleigh distribution becomes applicable to 
the absolute peaks of the following encounter waves with smaller values (Figure 5.10) in 
comparison with the zero-speed case (Figure 5.8). The reasoning is similar: the narrow 
band spectrum makes the secondary peaks less likely and large-amplitude data are likely 
to have a period close to the mean period. 

Based on the considerations above, it seems reasonable to assume that large peaks 
follow the truncated Rayleigh distribution. 
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Figure 5.10 Histogram of absolute value of peaks for the case with forward speed 15 knots and 
truncated Rayleigh distribution 

5.2.2.   Rare Problem for Both-sides Crossing 

Consider the rare problem for a peak-based envelope. The objective is to find a 
conditional probability such that if the peak-based envelope crosses a given threshold a\, 
it will exceed a given level ai. 

Then, the conditional probability that the process will cross the level ai if the 
level a\ is crossed (formula 3.9), provided a-p> a\, and taking into account Rayleigh 
distribution of the envelope: 

P = f(a2) 
•x 

\/AA)dA 

= exp 
v 

(a; -a;) 
2V. 

(5.34) 

The value P expressed with formula (5.34) is the probability that if the process x 
up-crosses the threshold a\, it will also up-cross the level a^. It also can be considered as 
a fraction (actually a limit value of it) of the upcrossings through the threshold a\, which 
also cross the level ai. 

As the sample-process x is normal (the normal distribution is symmetric) and 
centered (the mean value is zero), the same value P describes the conditional probability 
that the process v will down-cross the level -ai if it has previously down-crossed the 
threshold -a\. 

Then, this probability also describes a fraction of both-sides crossing of the 
threshold ±a\ that will also cross the level ±aj. 

The above consideration concludes that the problems of upcrossing, 
downcrossing, and both-sides crossing have the same rare solution if the process is 
normal and centered.   In principle, this statement can be generalized for any symmetric 
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distribution, but it is outside of the scope of the current consideration as the sample 
process is normal. 

Finally, the solution of the rare problem for the both-sides crossing is identical to 
the solution of the rare problem for upcrossing: 

PH = exp 
IV. 

= P   a^> a. (5.35) 

Similar to the upcrossing, case formula (5.35) can be interpreted in terms of 
absolute values of peaks: formula (5.35) expresses a conditional probability, that an 
absolute value of a peak exceeding the threshold a\ will also exceed the level a2. As the 
absolute values of peaks have a truncated Rayleigh distribution, such an interpretation of 
(5.35) is only valid for a, < a\. 

The complete theoretical solution for the both-sides crossing rate of the level a2 

can be expressed as: 

K,Xa2) = K^)PB (5 36) 

Taking into account formula (5.25) for the both-sides crossing of the threshold a\ 
and simultaneously substitute (5.35): 

1   \v~      ( 
rc V V. V 

a, 

IV. 
exp (a~2 -ax') 

2V. 
(5 37) 

After simplification, the formula (5.37) yields: 

i [F~    ( 
*M*(":> = -, 77-exP 11V K. 2V. 

(5 3N) 
« / 

Formula (5.38) is identical to Formula (5.16). It is the direct expression for the 
rate of the both-sides crossing of a normal process with zero mean. This confirms the 
applicability of the rare solution (5.35) for the both-sidess crossings. 

Direct application of the formula (5.36) for extrapolation may encounter 
difficulties related to applicability of Poisson flow. 

Strictly speaking, the applicability of the Poisson flow is required only for the 
level where the probability of failure will be evaluated. In this case, this would be the 
level £72- Therefore, theoretically, Poisson flow may be not applicable at the threshold a\, 
but the method is still valid. However, by the very meaning of extrapolation, the crossing 
events of the level ay are not expected to be seen. Therefore, it is impossible to verify 
applicability of the Poisson flow for the level a2. 
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A practical way to insure applicability of the Poisson flow on the level a2 is to 
verify that it is applicable on the lower level, for which there is enough data to make a 
judgment. If applicability of the Poisson flow has been confirmed for the threshold a\, 
then it is applicable for the level aj. 

As it was shown previously (see Table 10) the applicability of the Poisson flow 
for the both-sides crossing can only be seen above the threshold of 10.5 m. There were 
only 54 events on that level. As it was explained, due to strong autocorrelation, these 
events have a tendency to appear in pairs, so the threshold has to be very high, so one 
side is crossed and another one does not. This situation is expected to become even 
worse for the encounter waves as it takes longer for the autocorrelation function to die 
out. These difficulties justify application of the envelope instead of the process itself (see 
Section 4). 

5.2.3.   Rare Problem for Upcrossing of Envelope 

Consider the rare problem for the theoretical envelope upcrossing. The theoretical 
envelope is a stationary stochastic process; its values have a Rayleigh distribution and its 
first derivative is distributed normally. Based on these considerations, it was shown in 
section 4 that the upcrossing rate of the envelope can be presented as, see formula 
((4.82): 

A,. = a. fc^iexp 
2%V. 

,2   ^ 

2V, 
(5.39) 

v J 

Application of the general formula for the rare solution (equation 3.9), for the 
case of the envelope, yields the following expression: 

2   \ 
a2 

2V.. 
exp 

a 2   \\ 
I 

2V. < J 

a, 
- -^exp 

/ 2 2\ a2-at 

2V v J 

(5.40) 

Taking into account (5.35) the relation between the solutions for rare problem for 
the upcrossing of the normal process itself and its envelope: 

P=2LF (5.41) 

To verify the solution of the rare problem, consider the complete one, expressing 
the rate of the upcrossing of the envelope through the level aj. 

Consider substitution of (5.39) and (5.40) into (5.42) 

(5.42) 
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2F 

2   \ </, 

i 7 <', 
exp 

q2" - a. 
2 \ 

(5.43) 

After simplification, expression (5.43) yields the following: 

a2 

2V. « / 
(544) 

Formula (5.43) is identical in structure to formula (5.39) and explicitly expresses 
the rate of upcrossing through the level «:. This is the confirmation of correctness of the 
solution of the rare problem (5.40). 

5.2.4.   Upcrossing of Peak-based Envelope vs. Theoretical Solution 

As it was shown in the subsection 4.5, the rate of upcrossing of a peak-ba^ed 
envelope may be quite different form the theoretical solution. It depends on width of the 
spectrum, if the theoretical solution can be used to describe the rate of upcrossing If the 
spectrum is narrow, the envelope is a slowly changing function (in comparison with the 
process itself), then the peak-based envelope is quite close to the theoretical envelope, see 
Figure 5.11 (a). If the spectrum is relatively wide the rate of change of the envelope is 
comparable with the first derivative of the process and the differences between the peak- 
based and theoretical envelope may not be insignificant, see Figure 5.11 (b). 

This explains the effect described in the Section 4. The theoretical upcrossing 
rate of the theoretical envelope (formula 4.83) has shown good agreement with the 
statistical estimate of the upcrossing rate of the peak-based envelope for the following 
wave case (see Figure 5.12 a), while the theoretical solution and statistical estimates do 
not agree for the zero-speed case (see Figure 5.12 b). This creates a problem a 
theoretical solution is needed to compare with the results of EPOT method. 
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Figure 5.11 Zoomed in fragments of peak-based envelope superimposed on the theoretical envelope: 
a) recorded" by the "gauge" moving with the waves (pure following seas) with the speed 15 knots b) 

recorded by fixed "gauge" -zero speed case 
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5.2.5.   Both-Sides Crossing Rate as the Theoretical Solution 

As it was demonstrated above, there is a strong relationship between absolute 
value of peaks and both-sides crossings. It also was shown that the rate of the both-sides 
crossing has a theoretical solution. For the case of symmetric centered process, it equal to 
double upcrossing rate, see formula (5.15). 

The event of the both-sides crossing through the prescribed level obviously is the 
partial stability failure. It was shown also that the Poisson distribution is not applicable to 
this event, and therefore its use in these calculations may be limited. However, it still 
makes sense to see the relationship between the rate of the both-sides crossing and rate of 
upcrossing of the peak-based envelope. 

Comparison of the statistical estimates of upcrossings of the peak-based envelope 
with the theoretical rate of both-sides crossing is shown in Figure 5.13 for the following 
waves case. Obviously, these are two different values; the theoretical rate of both-sides 
crossings does not belong to the confidence interval of any of the statistical estimates. 
However, the tendency of the estimates shows some signs of conversion with the 
theoretical rate of both-sides crossing. This tendency can be confirmed by comparison of 
two theoretical curves, not limited by gathered statistics. They are shown in Figure 5.14; 
the convergence tendency is obvious. 

The convergence of the rate of the both-sides crossing and the envelope 
upcrossing is not universal; it is not true for the zero speed case shown in Figure 5.15. 
After the crossing the curve shows the tendency to diverge. In principle, same effect can 
be seen for the following waves, but it occurs for higher levels (~25 m vs. 10 m) and 
much smaller number for the rates (1 .E-18 vs. 1 .E-3). 

Figure 5.16 shows the theoretical rate of the both-sides crossing plotted along 
with statistical estimates of upcrossing of the peak-base envelope for the zero speed case. 
One can notice that the theoretical value starts belonging to the confidence interval from 
the level of 9.5 m and never leaves it after that level. 
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Figure 5.13 Theoretical rate of both-side crossing and statistical estimate of upcrossing of the peak- 
based envelope. Following Waves Case 
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Figure 5.14 Theoretical rate of both-sides and upcrossing of the envelope. Following Waves Case 
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Figure 5.16 Theoretical rate of both-sides crossing and statistical estimate of upcrossing of the peak- 
based envelope. Zero-Speed Case 

These comparisons show that both-sides crossing rate, in principle, can be used as 
a theoretical solution for the problem of upcrossing of peak-based envelope. 

For the following waves case, asymptotic convergence of the both-sides crossing 
rate and envelope upcrossing rate confirms the above statement; since the peak-based 
envelope is a good approximation for the theoretical envelope, the theoretical envelope 
upcrossing rate can be used for a close approximation as well. 

The reason why the convergence is asymptotic seems to be as follows. The rate of 
envelope upcrossing for lower levels is smaller then the rate of both-sides upcrossing, 
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then one crossing of the envelope corresponds to several both-sides crossings. The 
reason for that is significant clustering due to the narrow spectrum. Once the level 
increases, there are more chances that the process crosses the level only twice (both 
sides) corresponding to the highest peak in vicinity, as the chances that the two 
neighboring peaks are exactly the same is small. 

For the zero-speed case, there is no convergence between the theoretical envelope 
upcrossing rate and both-sides crossing rate. The both-sides upcrossing rate goes higher 
than the envelope upcrossing rate until a certain point and then becomes slower (point A 
in Figure 5.15. This can be explained as follows. Before point A, the level is relatively 
low. so there are significant chances that several periods will be crossed once the peak- 
based envelope is crossing. This mechanism is similar to what was described for the 
following wave case. After point A, the crossing rate on the envelope upcrossing is 
higher than the both-sides crossing. That means the envelope has more crossings than the 
process itself (both sides). This occurs because the envelope oscillates between peaks 
(see Figure 5.12b) of the process and can cross the level while the peak remains below 
the level. This is exactly the reason why the peak-based envelope was introduced in 
section 4. Therefore, the both-sides crossing rate is the value to trust here. 

Figure 5.16 shows a convergence of the statistical rate of the upcrossing o\ the 
peak based envelope with the theoretical rate of the both-sides crossing. The reason why 
the difference is large for smaller value of the threshold is likely to be the same as above, 
one crossing of the peak-based envelope corresponds to several crossings of the both- 
sides of the process. Once the level is high enough that only the highest peak in a cluster 
can reach it, the theoretical rate becomes included in the confidence interval. 

5.2.6.   Approximate Solution for Peak-Based Envelope Upcrossing 

Considerations in the previous subsection established that the correct theoretical 
solution - the rate of the both-sides crossing - is achieved asymptotically. This may 
render inconclusive the comparison of the extrapolation results with the both-sides rate 
alone, as the failure always can be explained that the level is not "high enough". 

Therefore it makes sense to use the upcrossing rate of the theoretical envelope for 
another comparison base for the following wave case. This makes the following wave 
case the only "clean" comparison, where the theoretical solution is available everywhere. 

An approximate non-rare solution may be useful for the zero speed case. It can be 
developed by the least square approximation through the statistical estimate of 
upcrossing. At least such a solution can be used to test the solution for the rare problem. 
The upcrossing rate is searched in the following form: 

Xi(z) = e\p(c„+c]z + c\z2)   ;        z = a, (5 45) 

Taking the natural logarithm for both sides of (5.45) and introducing a nev\ 
variable v yields: 
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V = c0 +c^z + c2z~ v = ln(A,) (5.46) 

Coefficients Co, C\, and c2 are evaluated with the least square method using 
statistical estimates for the upcrossing rates. The values of these coefficients are 
characterized by significant variability from one dataset to another, see Table 14. The 
result is shown in Figure 5.17. 
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Figure 5.17 Rate of upcrossing of the peak-based envelope: zero-speed case 

Table 14. Coefficients for curve fit for upcrossing rates 
Coefficient for the curve fit Co C] Ci 

Original Data Set -5.427 0.628 -0.093 

Alternative Data Set 1 -1.054 -0.362 -0.038 

Alternative Data Set 2 -5.209 0.715 -0.106 

5.3.Extrapolation with EPOT: Following Wave Case 

As it was demonstrated above, only the following wave case allows comparison 
with the robust theoretical solution. The reason is that as the encounter spectrum is 
narrow in the following waves, the theoretical envelope becomes a slowly changing 
function of time in comparison with the process itself. Therefore, the peak-based 
envelope becomes a reasonable approximation of the theoretical envelope. Then the rate 
of upcrossings of the peak-based envelope can be described by the theoretical formula, 
which is available for the theoretical envelope. 

That said, the following wave case truly represents a test bed for the method since 
the true answer is known from theory. 
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5.3.I.   Distribution of Maxima of the Peak-Based Envelope 

Application of the EPOT method is only slightly different for the POT method 
that was described in detail in Section 3. Therefore the focus must be on these 
differences. 

The first step is the search for maxima of the peak-based envelope, see Figure 
5.18. Distribution of the maxima of the peak-based envelope is shown in Figure 5.19(a) 
along with Rayleigh distribution (however, the character of the distribution looks 
lognormal rather than Rayleigh). At the same time, the truncated Rayleigh distribution 
(see formula 5.30) is not rejected by the chi-square goodness-of-fit test for the tail of the 
distribution starting at the 7 m level, see Figure 5.19(b). 
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Figure 5.18 Peak based envelope (red) and its maxima 
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Figure 5.19 Distribution of maxima of the peak based envelope superimposed with Rayleigh 
distribution (a), truncated Rayleigh dustiribution 

5.3.2.   Fitting Weibull for Maxima of the Peak-Based Envelope 

Similar to the POT method, the second step is fitting a histogram of maxima of 
the peak-based envelope and fitting the Weibull distribution to these data. In this context, 
the Weibull distribution is used just as a smoothing curve for the empirical distribution. 

Only the data exceeding a given threshold are used to fit the Weibull distribution. 
Exactly like in the case of the POT method described in Section 4 , the first guess for the 
parameters of the Weibull distribution is performed using the moments method described 
in Section 2 and then the method of maximum likelihood is applied.   The samples are 
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shown in Figure 5.20 along with the results of testing of the goodness-of-fit. The fitted 
distribution was not rejected in both cases for the threshold equal to 8 m and 9 m. 

The third step is evaluation of the confidence interval for the fitted distribution. 
The technique for evaluation of the confidence interval is described in the section 3. The 
idea is to find the confidence interval for the mean value and variance estimates and then 
shift and scale the data accordingly. Once done, two more Weibull fits are performed on 
the altered data, corresponding to upper and lower boundary. The sample result for 9 m 
threshold is shown in Figure 5.21. 
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Figure 5.20 Weibull fit for the maxima of the peak-based envelope exceeding the threshold of a) 9 m 
and b) 8 m 

0.5-- 

Figure 5.21 Weibull CDF with confidence interval fitted for the maxima of the peak-based envelope 
exceeding the threshold of 9 m 

Figure 5.21 also shows the Rayleigh distribution completely contained (at least 
visually) within the confidence interval and almost coinciding with the Weibull fit. This 
is consistent with previously made conclusions that the Rayleigh distribution is not 
rejected for the tail of the maxima of the peak-based envelope. 

The Weibull fit actually represents the conditional distribution for a peak of the 
envelope to exceed a level if the given threshold was already exceeded. 
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5.3.3.   Extrapolation with the Distribution of the Peak-Based Envelope 

Once both non-rare and rare solutions are obtained, the procedure of extrapolation 
is trivial: it is the application of formulae (3.22-3.24). The sample result is shown in 
Figure 5.22 for the threshold of 9 m. The extrapolated solution is shown with its 
confidence interval and superimposed with the rate of upcrossing of theoretical envelope 
as well the theoretical rate for both-sides crossings. As the peak-based envelope is 
considered as a reasonable approximation of the theoretical envelope, the upcrossing rate 
of the latter is expected to stay within the confidence interval of the extrapolated solution. 
As it can be seen from the Figure 5.22, the theoretical solution stays within the 
confidence interval until a certain level (it equals 18.5 m for the 9 m of the threshold), the 
breaking point as it was defined in Section 3. 

Similar to the upcrossing problem, discussed in Section 3, the position o\' the 
breaking points depends on the threshold, see Figure 5.23. 
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Figure 5.22 Extrapolated estimate of upcrossing rate of the peak-hased envelope with confidence 
interval as a function crossing level. The threshold is 9 m, 53 peaks 
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Figure 5.23 Breakpoint level (the level below which the extrapolation is still good) vs. threshold 

Figure 5.22 also shows the theoretical rate of the both-sides crossing. As it was 
shown above, this solution gives "the correct" answer only for the very high level and 
only for the case of narrow spectrum. This is the reason why the confidence interval does 
not include the rate of the both-sides crossing for smaller levels; however, starting at the 
level of -11.4 m, the theoretical rate of the both-sides crossings enters the confidence 
interval of the extrapolated solution and stays there until the level of 18.75 m because of 
the convergence discussed above. 

The breaking point evaluated for the both-sides crossing rate behaves similarly to 
the "envelope breaking point" as it can be seen from Figure 5.23. 

Further analysis of the performance of the EPOT method is done for the level of 
15 m. As it can be seen from Figure 5.23, this is the level where the method starts 
breaking up for some of the thresholds. Also the event of upcrossing the level of 15 m is 
very rare. The mean time for the event (based on theoretical envelope upcrossing rate) is 
about 7 years and 4 months. So, if 10 events are needed to estimate the rate, it will take 
about 73 years of data, while the EPOT method only used 100 hours of data. 

Figure 5.24 shows the influence of the choice of the threshold on the rare solution 
(probability that the peak-based envelope exceeds the level of 15 m, if the threshold is 
exceeded), while Figure 5.25 shows the complete solution. Similar to Figure 5.22, 
Figure 5.25 shows both theoretical solutions: the rate of upcrossings of the theoretical 
envelope and the both-sides crossing rates. It is clearly seen from Figure 5.25 that for the 
level of 15 m, the difference between the two theoretical solutions is small in comparison 
with the width of confidence interval of statistical extrapolation. 

The estimates oscillate around the theoretical solution (compare to Figure 3.22 
and Figure 3.26 plotted for the upcrossing problem in section 3), so averaging through 
several levels will make the estimate more stable. Formulae (3.46-3.47) express this 
averaging procedure. Averaging is performed for all the thresholds while the number of 
points remains above 30 (30 points is considered enough to evaluate a histogram and fit 
the distribution). The results of averaging are shown in Figure 5.26. 
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Figure 5.24 Rare solution for the level of 15 m 

As it can be seen from the insert in Figure 5.26, both theoretical solutions are 
included in the confidence interval for the test level of 15 m. Breaking points are 16.5 m 
and 17 m for the theoretical envelope upcrossing rate and rate of both-sides crossings, 
respectively. 
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Figure 5.25 Statistical extrapolation of the upcrossing rate of peak-based envelope - complete 
solution for the level of 15 m 

Successful application of the averaging over several thresholds for the current 
numerical example does not prove yet that it will work as well for all other cases. While 
it seems to be impossible to prove, it still makes sense to try it at least on two alternative 
data sets used earlier in the Section 3. Figure 5.27 shows dependence of the breakpoints 
of these datasets as a function of the threshold. The lowest point is about 12 m. 

Figure 5.28 shows behaviors of a rare solution and the complete extrapolated 
estimate for a:=15 m using two alternative datasets. These behaviors are principally 
similar to the original set seen in Figure 5.24 and Figure 5.25. Most of the threshold 
values enable the estimate "to catch" the theoretical solution in its confidence interval. 
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Figure 5.27 Breakpoint level (the level below which the extrapolation is still good) for the 
extrapolated estimate of upcrossing of peak-based envelope vs. threshold for two alternative data sets 

Figure 5.29 shows results of the averaging technique for two alternative datasets. 
Both theoretical solutions, the rate of upcrossing of the theoretical envelope and the rate 
of both-sides crossing, are within the confidence interval of the extrapolated estimate. 
Data for breaking points are shown in Figure 5.29 as well. 

In general, the performance of the method can be characterized as satisfactory 
taking into account the rarity of the event of crossing the level of 15 m. 
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1? m if the threshold has been crossed - rare solutions (upper plots: a, b) and complete extrapolated 

estimate (lower plots: c, d) for two alternative data sets for ai=15 m 
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Figure 5.29 Level 15 m: theoretical solution and extrapolated estimate averaged for (a) the set I 
thresholds 7.5-9.6 m; the distribution for the threshold 9.6 m was fitted with 33 points, (b) For the set 

2 range is 7.5-9.6 m with 30 points for the threshold 9.6 m. 

5.3.4.   Extreme Value Distribution of the Peak-Based Envelope 

The extreme value distribution is an alternative way of solving the rare problem, 
as it was shown in Section 3. While the Weibull distribution is used in both cases, the 
way the dataset is sampled makes the difference. Classic extreme value theory uses the 
maxima of a process sampled within a constant time window. The size of this window 
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becomes a parameter that needs to be set in order to use the method. In principle, this size 
must produce independent data points in the neighboring windows. While the influence 
of the window size still needs to be studied, it was chosen to be 900 seconds for the 
sample in this section. Figure 5.30 illustrates that procedure: only a point in the window 
1 was collected as the maximum value in the window 2 did not exceed the sample 
threshold of 9 m. 
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I (HI 1200 1300 1400 15(H) 1600 17(H) 18(H) 

Figure 5.30 Collecting data for extreme value distribution, threshold 9 m 

Further procedure and general character of the results are not very different from 
the previous case where the Weibull distribution was fitted using all maxima of peak- 
based distribution exceeding the threshold. Figure 5.31 shows dependence of the 
breakpoint level (the level until which the extrapolated estimate still contains a theoretical 
solution in its confidence interval) based on two theoretical solutions: the upcrossing rate 
of the theoretical envelope and theoretical rate of the both-sides crossings. Both 
breakpoints are quite close to each other, due to observed convergence of both of the 
theoretical solutions for higher levels. 
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Figure 5.31 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for 
the extrapolation based on extreme value distribution 

Figure 5.32 shows the influence of the choice of the threshold on the rare solution 
for the level of 15 m ( the probability that the peak-based envelope exceeds the level of 
15 m, if the threshold is exceeded), see formula (3.44), while Figure 5.33 shows the 
complete extrapolated estimated along with both theoretical solutions. Due to 
convergence, the difference between the two theoretical solutions is small in comparison 
with the width of the confidence interval. 
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Figure 5.32 Rare solution for the level of 15 m using extreme value distribution 
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Figure 5.33 Statistical extrapolation of the uperossing rate of peak-based envelope - complete 
solution for the level of 15 m based on extreme value distribution 

Similar to Figure 5.24 and Figure 5.25 (as well as analogous to Figure 3.22 and 
Figure 3.26) plotted for the uperossing problem in Section 3, the estimates oscillates 
around the theoretical solution, so averaging through several levels will make the 
estimate more stable. Formulae 3.46-3.47 express this averaging procedure. Similar to 
the first method (fitting Weibull to maxima, see previous subsections) averaging is 
performed for all the thresholds while the number of points remains above 30 (30 points 
is considered enough to evaluate a histogram and fit the distribution). The results of 
averaging are shown in Figure 5.34. Both theoretical solutions are included in the 
confidence interval for the test level of 15 m. Breaking points are 17.75 m and IX m for 
theoretical envelope uperossing rate and the rate of the both-sides crossings, respectively. 
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Figure 5.34 Averaged estimate of rate of upcrossing of the peak-based envelope extrapolated using 
extreme value distribution. Insert shows the level of 15 m 

Successful application of the averaging over several thresholds for the current 
numerical example does not prove yet that it will work as well for all other cases. While 
it seems to be impossible to prove, it still makes sense to try it at least on two alternative 
data sets used earlier in Section 3. Figure 5.35 shows dependence of the breakpoints of 
these datasets as a function of the threshold. The lowest point is about 12 m. 

Figure 5.36 shows behaviors of the rare solution and the complete extrapolated 
estimate for ci2=\5 m using two alternative datasets. These behaviors are principally 
similar to the original set seen in Figure 5.32 and Figure 5.33 as well as Figure 5.24, 
Figure 5.25 and Figure 5.28. Most threshold values enable the estimate "to catch" the 
theoretical solution in its confidence interval. 
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Figure 5.35 Breakpoint level (the level below which the extrapolation is still good) for the estimate of 
upcrossing of peak-based envelope extrapolated using extreme value distribution vs. threshold for 

two alternative data sets 

Figure 5.37 shows results of the averaging technique for two alternative datasets. 
Both theoretical solutions (the rate of upcrossing of the theoretical envelope and rate of 
the both-sides crossing) are within the confidence interval of the extrapolated estimate. 
Data for breaking points are shown in Figure 5.37. 
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Figure 5.36 Extrapolated estimate of conditional probability that the process will exceed the level of 
15 m if the threshold has been crossed - rare solutions (upper plots: a, b) and complete extrapolated 
estimate (lower plots: c, d) for two alternative data sets for a2=15 m. Both cases use extreme value 

distribution for extrapolation 
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Figure 5.37 Level 15 m: theoretical solution and extrapolated estimate averaged for (a) the set 1 
thresholds 7.5-9.6 m; the distribution for the threshold 9.6 m was fitted with 33 points, (b) For the set 

2 range is 7.5-9.6 m with 30 points for the threshold 9.6 m. 

Figure 5.34 as well as Figure 5.37 also shows comparison between two estimates 
based on the Weibull fit (described in the previous subsection) and extreme value 
distribution. Both confidence intervals have quite substantial common area, which means 
statistical equality of the two estimates. 

The two estimates used the rare solution based on different ways of using Weibull 
distribution: as a distribution of maxima and an extreme value distribution. The fact that 
both of these ways have produced the same solution is notable; it can be used to check 
the estimates against each other when theoretical solutions are not available. 

The average break point between all three datasets was 17.8 m (based on the rate 
of upcrossing of the theoretical envelope). The mean time before such an event is about 
330 years. Assuming that at least 10 events are needed to get a statistical estimate, it will 
take about 3,300 years worth of data to get the result. The EPOT method produced this 
result with only 100 hours of data; this makes the data reduction factor equal to 290,500. 

5.4.Extrapolation with EPOT: Zero-Speed Case 

5.4.1.   Approximate Theoretical Solution for Zero-Speed Case 

As it was discussed above, there is no exact theoretical solution available for the 
upcrossing of the peak-based envelope in the general case. Such a solution is only 
available for the case of the relatively narrow-band spectrum, when the envelope 
becomes a slowly changing function of time (in comparison with the process itself) and 
the peak-based envelope becomes a relatively close approximation of the theoretical 
envelope. 
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To overcome this difficulty, the approximate solution was proposed in one of the 
previous subsections. The non-rare solution used regression to express dependence of the 
upcrossing rate on the threshold, see formula (5.45). 

It is also assumed that the large-values of the peak-based envelope are likely to 
follow a Rayleigh distribution. This assumption can be partially justified as the absolute 
value of the peaks do follow a truncated Rayleigh distribution (5.32). However, the 
distribution of absolute value peaks is not identical to the distribution of peak-based 
envelope, as points of the latter are calculated with linear interpolation between the peaks 
(see Section 4). This assumption needs to be checked by the goodness of fit-test of 
maxima of the peak based envelope. Once this assumption has been checked and found to 
be acceptable. Formula (5.40) is to be used for the rare solution. Therefore the complete 
solution can be formulated. However, it is only an approximation. This means that an 
agreement between this solution and the extrapolation does not validate the method, 
neither the disagreement between the approximate solution and the extrapolation would 
invalidate it. 

It still makes sense to see how two other theoretical solutions (the rate of 
upcrossing of theoretical envelope and theoretical rate of the both-side crossings) will 
compare with the extrapolation result. 

5.4.2.   Distribution of Maxima of the Peak-Based Envelope 

A sample record with the maxima of the peak-based envelope is shown in Figure 
5.38. Comparing to the similar picture for the following wave case in Figure 5.18, one 
can see that the envelope is no longer a slowly changing process; as a result, the 
population of maxima of the envelope should not be much different from the population 
of absolute values of peaks of the process itself. 
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Figure 5.38 Peak based envelope (red) and its maxima: zero-speed case 

This explains applicability of the truncated Rayleigh distribution, as shown in 
Figure 5.39 (b), while the Rayleigh distribution as whole remains inapplicable (see 
Figure 5.39 (a)). Also, this applicability can be used to justify the assumption made 
earlier for using formula (5.40) for the rare solution. 
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However, the applicability of the truncated Rayleigh distribution was judged 
based on the Pearson chi-square goodness-of-fit test, which did not reject this hypothesis 
for a particular dataset. So, at least, this applicability needs to be checked for all three 
datasets considered. The results of this check are summarized in Table 15. Note that 
without removal of a single outlier in the last bucket of the histogram for the Alternative 
Dataset 1, the goodness-of-fit test would reject the hypothesis for all starting values with 
an exception of 10.25 m. 
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Figure 5.39 Distribution of maxima of the peak based envelope superimposed with Rayleigh 
distribution (a), truncated Rayleigh distribution. Zero-speed case 

Table 15. Applicability of Truncated Rayleigh Distribution for Maxima of Peak-Based Envelope for 
the Zero-Speed Case 

Dataset Start 
value 

Number 
of points 

Value of x" d P Comment 

Original 7.10 567 20.5 13 0.0836 

Alternative 1 6.40 876 27.1 17 0.0566 Remove an outlier in the last bin 

Alternative 2 6.44 931 24.6 14 0.0776 

5.4.3.   Extrapolation with the Distribution of the Peak-Based Envelope 

As it was noted above, there is no exact theoretical solution to perform a correct 
comparison with extrapolated estimate of peak-based envelope upcrossing of the zero 
speed case. There is one approximate solution based on the regression formula for the 
non-rare problem and two theoretical solutions known not to be completely applicable in 
this case. These solutions are the theoretical rate of the both-sides crossing and 
upcrossing rate of the theoretical envelope. The comparison may yield interesting 
information, however, strictly speaking, this comparison cannot be used to validate or 
invalidate the method. 

Figure 5.40 shows the breakpoints based on an approximate solution, the 
theoretical rate of the both-sides crossings, and the rate of upcrossing of theoretical 
envelope. Surprisingly, they are not much different, with the lowest point at about 13 m. 
A similar picture can be seen in Figure 5.41 and Figure 5.42, except from 7.8-8.6 m in 
Figure 5.42. 

There is one important detail of how the breaking point was calculated. The rate 
of upcrossing  of the  theoretical  envelope  may  be  significantly  different  from  an 
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approximate solution as the latter is based on the regression formula for the upcrossing of 
the peak-based envelope. As it was shown in Section 4, the rate of upcrossing for 
theoretical and peak-based envelope is quite different for the zero-speed case. Therefore, 
it may be expected that the rate of the theoretical envelope may be outside of the 
confidence interval of the extrapolated estimate, especially for the lower threshold, where 
confidence interval is relatively narrow. 

This is exactly what is observed in Figure 5.43. The alternative data set 2 clearly 
illustrates this effect. The inset of Figure 5.43 zooms in the initial range of curves. 
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Figure 5.40 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for 
the extrapolation based on fitted distribution of maxima for zero-speed case. 
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Figure 5.41 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for 
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set I 
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Figure 5.42 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for 
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set 2 
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Figure 5.43 Extrapolated estimate of upcrossing rate of the peak-based envelope with confidence 
interval as a function crossing level. The threshold is 9 m, 227 peaks, alternative set 2 
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As it can be clearly seen from Figure 5.43, the curve of the rate of the upcrossing 
of the theoretical envelope starts outside of the confidence interval of the extrapolated 
estimate. Then, somewhere around 13 m, it enters the confidence interval. Then, it leaves 
the confidence interval just short of the level of 18 m. 

Behavior of the theoretical rate of the both-sides crossing is somewhat similar. It 
also may start outside of the confidence interval. The reason is that several both-sides 
crossing events may be covered by one peak-based envelope upcrossing, say. for 
example, if two neighboring positive peaks happen to be above the threshold (see Figure 
5.44). That is why the theoretical rate of the both-sides crossing is larger than the 
extrapolated estimate and the approximate solution for relatively lower levels. However, 
once the level increases the situation, similar to the one shown in Figure 5.44, becomes 
very rare. Only one peak at a time has a chance to be above the level. This makes the 
both-sides crossing rates converge and even cross the approximate solution in point A 
from Figure 5.43. As there is no reason why the theoretical rate of the both-sides crossing 
should be lower than the upcrossing rate of the peak-based envelope, further behavior of 
the curve can be explained by an approximate nature of the solution that used the 
regression formula. 

Behavior of theoretical rate of the both-sides crossing and rate of the theoretical 
envelope was compared and discussed earlier, see Figure 5.15, 
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Figure 5.44 On difference between envelope-base peak crossing and both side crossing 

Concluding the discussion, both the theoretical rate of the both-sides crossing and 
the upcrossing rate of the theoretical envelope may take values outside of the confidence 
interval of the extrapolated estimate for lower thresholds. However, both curves may 
enter the confidence interval for larger values of the threshold. Therefore, it makes sense 
not to start the search for the breaking point from the very beginning. The level 13.25 m 
was used as an initial for the Figure 5.40 through Figure 5.42. 

The breaking point for the approximate solution, however, was searched for 
starting from the very beginning. This made a difference only in Figure 5.42 in the range 
of 7.8-8.6 m. If the breakpoint for the approximate solution is searched for starting at the 
level 13.35 m, like for other solutions, the flat segment disappears, see Figure 5.45. 

Figure 5.46 shows how the approximate solution has left the confidence interval 
around 9.5 m and has re-entered it around 11.5 m. Possibly, the reason of such behavior 
is usage of the regression formula in the approximate solution that generally increases the 
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level of uncertainty. Figure 5.46 shows the approximate solution that stays very close to 
the upper boundary of the confidence interval. Also this problem does not exist for higher 
thresholds. This needs to be taken in to account when choosing the range of averaging. 
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Figure 5.45 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for 
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set 2 

Extrapolated estimate vs. approximate solution for the threshold 7.8 m 791 peaks, 
alternative data set 2 
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5.4.4.   Averaged Extrapolation Based on Weibull Fit of Maxima 

The complete extrapolated solution plotted for different threshold levels (see 
Figure 5.47) shows some spreading of the extrapolated estimate around the theoretical 
solutions, therefore the averaging with formulae (3.46) and (3.47) can improve accuracy 
of the estimate. Figure 5.48 shows the averaged estimates for the different levels of the 
original dataset. 
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Values of breakpoints of averaged estimates for all datasets are shown in Table 16. The 
averaging was done with the following rule: the highest threshold should have at least 30 
points. The lowest threshold is half-way back from the highest threshold to the level 
where the Poisson flow is still applicable. This is an empirical rule based on the 
observation that the higher thresholds tend to perform better for the extrapolation based 
on the Weibull fit of maxima. 

Table 16. Breakpoints for Averaged Estimates based on Weibull Fit of Maxima 
Dataset Breaking point m 

Approximate solution Theoretical rate of bolh- 
sides crossing 

Upcrossing     rate     of 
theoretical envelope 

Original 20.3 19.3 20.3 
Alternative Set 1 15.75 15.25 16.25 
Alternative Set 2 19.3 IX.X 19.8 

5.4.5.   Extrapolation Based on Extreme Value 

The procedure applied for extrapolation based on the extreme value distribution 
for the zero-speed case is exactly the same as it was for the following wave case. Figure 
5.49 illustrates that while collecting data, only one point in Window 1 was collected as 
the maximum value, despite that there was one more peak exceeding the sample 
threshold of 9 m; there is only one point in Window 2 that is above the threshold. 

v, m Window Window 2 

Time, s 

"0   100  200  300  400  5(H)  600  700  800  900  1000  1100  1200 1300 1400 1500  1600  1700 

Figure 5.49 Collecting data for extreme value distribution, threshold 9 m, zero speed case 

Since there is no exact theoretical solution the results may be compared with the 
same three solutions used for the extrapolation based on the Weibull fit of the maxima. 
Besides the approximate solution based on regression formula for the non-rare problem, 
these solutions include the theoretical rate of the both-sides crossing and upcrossing rate 
of theoretical envelope. 

As it can be seen from the discussion in the previous subsection, the difference 
between these solutions is not that large, especially in comparison with the width of the 
confidence interval for the extrapolated estimate. Some difference was found for 
relatively low values of the threshold where two theoretical solutions could go outside of 
the confidence interval and this has to be accounted for while calculating the values of 
breakpoints. 

The breakpoint values of the extrapolation based on the extreme value distribution 
are shown in Figure 5.50 through Figure 5.52 for all three data sets. 
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Behavior of all three solutions in terms of the breakpoints are pretty similar and 
do not require any additional comments with the exception of Figure 5.52 where results 
for Alternative data set 2 are shown. All of the curves have a flat segment in the range of 
thresholds 7.5-8.2 m. This is an area where relatively poor performance was observed. 
The approximate solution left the confidence interval around the 11 m level and the two 
other solutions never entered the confidence interval at all. The rest of the threshold 
values have shown normal performance. 

The averaging procedure was applied for all of the thresholds while the number of 
data points was above 30. The result for the original data set is shown in Figure 5.53. As 
one can see from this figure, all three solutions stay within the confidence interval until 
the level of 19.5 m was reached. The inset in Figure 5.53 shows the comparison between 
theoretical solutions and both extrapolated estimates for the level of 13 m. 

The results on the breakpoints of the averaged extrapolated estimates based on the 
extreme value distribution are shown in Table 17. 

110 

Figure 5.53 Averaged estimate of rate of upcrossing of the peak-based envelope extrapolated using 
extreme value distribution. Insert shows the level of 13 m 
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Table 17. Break points for Averaged Estimates based on Extreme Value Distribution 
Dataset Breaking point m 

Approximate solution Theoretical rate of both- 
sides crossing 

Uncrossing      rate      of 
theoretical envelope 

Original 20.3 19.3 20.3 
Alternative Set 1 13.75 15.25 14.5 
Alternative Set 2 19.25 18.75 19.75 

The lowest breakpoint in Table 17 is 13.75 m. It corresponds to the mean time to 
event of 11.89 days. So in order to get a statistically credible estimate, say, 10 events are 
needed. These 10 events may require almost 120 days worth of data. At the same time 
the method allowed us to get the estimate with only about 4 days of data (100 hours). So 
120 days, or 2880 hours, was reduced to 100 hours by the use of the method. That said, 
the efficiency of the method in the worst case resulted in a data reduction factor of 28. 
Averaging the breakpoint between all three cases brings it to 17.77 m and the data 
reduction factor up to 71,260. These data, however has to be considered preliminary, as 
more performance checks are expected. 

5.5. Summary 
The principal objective of this work is to find a practical solution for the 

probability of a partial stability failure during a given time. The goal of this section is to 
find out how to use the Peak-Over-the-Threshold (POT) method for partial stability in the 
form of a large roll event. 

The large roll event is equally dangerous on either side of a ship. Therefore it 
should be described as a random event of "both-sides crossing", a combining an 
upcrossing of a level on the positive side or downcrossing of a level on the negative side. 
If the boundary is the same for both sides and the process has symmetric distribution, the 
rate of the both-sides crossing is equal to twice of the rate of the upcrossing. The Poisson 
flow assumption is only applicable for a relatively high level of both-sides crossings, as 
upcrossing and downcrossing events occurring during one period are not independent. 

An upcrossing of the envelope of the process is a random event, theoretically 
equivalent to the both-sides crossing. Poisson flow is applicable to the envelope 
upcrossing. Also, the envelope upcrossing is equivalent to a random event that an 
absolute value of a peak has exceeded that level. Since the peaks of the envelope are 
used, the new version of the method is call "Envelope Peaks-Over-the-Threshold" 
(EPOT). 

The problem of the upcrossing of the peak-based envelope is that it does not have 
a closed-form solution for a generic spectrum even for a normal process. Nevertheless 
such a solution is needed to compare results of sample calculations. If a spectrum is 
narrow, then the peak-based envelope is a close approximation for the theoretical 
envelope. As a result, the formula for the upcrossing of the theoretical envelope of a 
normal process can be used. Therefore, only the example with a narrow-band spectrum 
can be used to complete the theoretical checking of the EPOT method. 
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To check the method using the example of a generic spectrum, an approximate 
solution is needed. Following the principle of separation, such a solution can be presented 
in the form of non-rare and rare sub-problems. The non-rare sub-problem is just an 
upcrossing of the peak-based envelope. It can be approximated by fitting a regression 
formula to the statistics of upcrossings. The solution of rare sub-problems is the 
probability that a process will exceed a given level if it has crossed a threshold below that 
level. This solution can be developed using the fact that absolute values of peaks of a 
normal process follow truncated Rayleigh distributions starting at a certain value. This 
value depends on a bandwith of the spectrum. 

Finally, the EPOT method was checked against both examples and shows quite 
satisfactory performance with average data reduction factors of 290,500 and 71,260 
respectively. 

202 



6. Algorithm Implementation 
This section describes the reference implementation of the EPOT algorithm. The 

reference implementation is coded in Matlab (requires Matlab R2008a or later). 

6.1.Envelope Construction 

6.1.1. Peak Definition for the Process 

Two definitions of a peak are implemented and may be used to define the 
envelope, then to define the peaks of the envelope. The first definition, referred to as a 
"zero-crossing peak" (ZC), defines a peak as the maximum value between a zero up 
crossing and a zero down crossing. Negative peaks (troughs) are computed as the 
minimum value between a zero down crossing and a zero upcrossing and then reflected 
about zero. 

Alternatively, peaks may be defined as local maxima. In this formulation, a particular 
point is considered to be a peak if it is greater than the three pevious and three following 
points. 

The zero-crossing peak method is used for two reasons. First, the zero-crossing 
method is much more reliable on signals that have noise. Several assumptions (related to 
noise frequency, the motion frequency, sampling rate, etc.) need to be made (or filtering 
employed) to find the peaks on a noisy signal. Second, the zero-crossing method 
removes secondary peaks, which are not of interest to us. 

6.1.2. Envelope Definition 

To construct the composite peak-based envelope, the negative peaks are reflected 
about the reference level. For a process such as the rolling of a ship, this reference level is 
zero, since deviations from upright are what are important, not deviations from the mean 
value. For cases where deviations from the mean value are important, the signal should 
be de-meaned (and the levels of interest should be given relative to the mean of the 
process). The time history of the envelope is constructed through linear interpolation 
between the peaks at the sampling frequency of the input signal. 

0 '0 ?0 JO 40 W « '0 K »0 •«' 

Figure 6.1. Sample Envelope With Linear Interpolation 
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6.1.3.   Peak Definition for the Envelope 

The peaks of the envelope are defined in a similar manner to the peaks of the signal. 
Instead of utilizing zero crossings, mean crossings of the envelope are used. The mean of 
the envelope is computed using the interpolated time history and the envelope peaks are 
the maxima and minima between mean crossings. Only the peaks above the envelope 
mean are used further in the algorithm. 

6.2.Candidate Threshold Selection 

Initially sixteen thresholds are defined. These thresholds are linearly spaced between 
the mean value of the envelope time history and an upper threshold. The upper threshold 
is defined by the requirement that we have at least 30 points to fit a distribution. The 
peaks of the envelope are sorted in descending order and the 31st entry in the sorted list is 
the upper threshold. 

The candidate thresholds are analyzed for the applicability of Poisson Flow to 
exceedances of the thresholds (using the envelope peak data). The tests for Poisson Flow 
applicability are discussed in Section 6.3. The lowest threshold that passes both tests for 
Poisson Flow applicability is taken as the lowest threshold for use in the statistical 
extrapolation. A new set of eight thresholds is linearly distributed between this lower 
threshold and the upper threshold described in the above paragraph. 

6.3.Analysis of Poisson Flow Applicability 

Sections 1.3.5 and 5.1.3 describes two methods for assessing the applicability of 
Poisson Flow for a given threshold, chi-squared Pearson Test and a Kolmogorov- 
Smirnov Test (KS Test). 

6.3.1.   Pearson X Test 

In a Pearson chi-squared test, the hypothesis is posited that the number of events 
in a certain time span is distributed via a Poisson distribution. To carry out this test, the 
envelopes derived from the time histories are first concatenated together. The peaks of 
the envelopes have already been found, so there are no peaks at the concatenation point. 
A window size (time span) is then defined to count events (peaks over the threshold). 
This time span is computed as: 

WindowSize=-^^ (6.1) 
N 'v POT 

Where Tsampie is the total duration of the concatenated envelopes and NPOT is the 
total number of peaks above the threshold in question. Defining the window size in this 
way generally limits the maximum number of events in a given window to about 4. This 
essentially sets the intensity (the single parameter) of the Poisson distribution to 1.0. The 
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concatenated envelope is then divided into sections each with a length of the window 
size. The number of POT in each window is counted. A Poisson distribution is fit to this 
data set using the maximum likelihood method. A good starting point for the intensity of 
the distribution in the fitting process is the mean number of events per window. This 
process is repeated for window lengths of 0.8 and 1.2 times the original length. The 
goodness of fit metric is then averaged between the three window spans. This is done 
since there is some variability of the results with window size due to the random process 
and the finite record length. 

See Figure 6.2 for a sample PDF used for the chi-squared test. If the averaged 
goodness of fit metric is above the accepted significance level (0.05). then the 
distribution fit is accepted and one of the two criteria for Poisson Flow at this threshold is 
satisfied. 
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Figure 6.2. Sample Distribution Fit to Number of Events in Time Window 

6.3.2.   Kolnwgorov Smirnov (K-S) Test 

For the K-S Test, the empirical cumulative density function (CDF) of time with 
no event derived from the time history, is compared to the CDF that is computed using 
the exponential distribution and a statistically calculated mean crossing rate (see Section 
6.4). The empirical CDF is derived from the time history as described in Section 1.3.4. 

The smallest time window analyzed is based on the decay of the autocorrelation 
function of the process. The peaks of the autocorrelation function are found (using the 
zero crossing method) and the first peak with a value below 0.05 is found. The smallest 
time window is set to the time of this peak. If multiple records are available for a given 
condition, then the autocorrelation functions of the records are averaged before the peak 
search is performed. For short duration records, the computed autocorrelation functions 
can behave poorly (even after averaging); they do not decay as expected. The lack of 
decay is due almost entirely to a deficiency in the amount of data.   If no peaks of the 
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averaged autocorrelation function are found to be below 0.05, then an alternative 
approach is taken. In this case, the peak based envelope of the autocorrelation function is 
computed and the time of first local minimum of the envelope is taken as the decay time. 

Each window is examined to see if there is at least one event in it. An auxiliary 
variable pi is constructed that is equal to 1 if there is at least one event in the window and 
zero if there is no event in the window. The mean of pi is computed for each record. This 
value is the probability that at least one event will occur within the window. The 
windows are then grouped in sets of two and the process is reapeated for a window size 
twice as big. The original windows are then grouped in sets of three, etc. This combining 
of windows happens until one window is produced. For the case of multiple records, the 
probabilities are averaged across the records. This process creates the empirical 
cumulative density function (EDF) for the probability of at least one event occurring. 

The theoretical CDF is then computed using the exponential distribution, as in 
equation (1.38). The K-S Test is carried out between these two density functions using 
equations (1.126), (1.127), and (1.129). Because of the limited data set, the EDF can 
become unrealiable for high values of probability. For this reason an upper limit is set, 
above which the comparison, using equation(1.126), neglects the data. The upper limit 
on the EDF is typically set at 0.65 (in terms of probability). The goodness of fit is only 
checked for values below this. 

6.4.Calculation of Threshold Exceedance Rates 

6.4.1.   Esimate of Threshold Exceedance (Upcorssing) Rate 

The threshold exceedance (upcrossing) rates are computed statistically. For the 
EPOT method the threshold crossing rate is given by: 

\ = ^loj- (6.2) 
T 

Where Npor is the number of peaks above the threshold and 7" is the total duration of the 
sample. Equation (6.2) is derived from equation (3.19). 

The threshold crossing rate is not strictly needed when the extreme value 
distribution is used for the rare problem (EVPOT method). It may, however, be 
computed as follows: 

'       N  ^ 
(6.3) X = In 

T 1 v Maxima ) 

Where NMOT is the number of maxima over the threshold, NMwama is the total number of 
maxima, and T is again the total sample time. Equation (6.3) is equivalent to equation 
(2.60). Here, the quantity {NMOT/NMaxima) is the probability that a given maximum value 
will be above the threshold and the quantity (/- NMOT/ NMaxima ) is the empirical CDF for 
the sample maxima. 
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6.4.2.   Esimate of Confidence Interval for Threshold Exceedance Rate 

The confidence interval on X is computed by first computing the confidence 
interval for NPOT or NMOT- Since each of these quantities may be considered the result of 
a set of Bernoulli trials, we may use the binomial distribution to compute the confidence 
interval. 

The binomial distribution has two parameters, commonly taken as n and /;. /; is 
the number of trials (in our case the number of time steps) and /; is the probability that 
any particular time step is a peak (or extremum) over the threshold, p is given simply by: 

/7 = ^2L (6>4) 

n 

The upper and lower bound of the confidence interval of the estimate of A are 
then given by: 

Qe.nonuat ( • " j/^ I "* P J Qmmm* (*/£ I W> P J ,55) 

VB -p t-ft T 

Where P is the complimentary to confidenceprobability, Q is a function invere to CDF. 

If n is sufficiently large (above 200), then a normal distribution may be 
substituted for the binomial distribution, since the factorials for the binomial distribution 
can be difficult to compute for large n. In this case one would use the mean and variance 
of the binomial distribution (np and np(I-p), respectively) as the parameters of the 
normal distribution. Details of theoretical background is given in Section 1.2. 

6.5.Distribution Fits to Peaks/Maxima Over the Threshold 

A two-parameter Weibull distribution is fit to the peaks and maxima over the 
threshold. Application of the method of maximum likelihood estimation (MLE) was 
discussed in Section 2.1.4. However, independent review of this work suggested that, 
when fitting a Weibull distribution with a shape parameter close to 1.0, the MLE method 
is known to have convergance issues. In general, the peak and maxima data being fit 
have this character. It was suggested that a least squares fitting approach may be more 
appropriate. For this reason the distribution is fit using a least squares fit to the 
empirically derived cumulative distribution function (EDF). The EDF is derived by 
ordering the data from smallest to largest. The EDF of a given value located at position / 
in the ordered set is computed as: 

EDF.^—1— (6.6) 
"samples T ' 

Where i is the index (starting at I) of the value in the ordered set and n is the number of 
peaks or maxima over the threshold in the data set. A minimization of the squared error 
between the EDF and computed CDF is then performed by adjusting the Weibull 
distribution parameters. 
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6.6.CalcuIation of Exceedance Rates for Levels of Interest 

6.6.1. Esimate of Level Exceedance Rates 

Finally, the exceedance rates for the levels of interest are computed. The calculation 
is comprised of the threshold crossing rate and the distribution fit to the peaks/maxima 
over the threshold. For the rare problem usng distribution fit (details are given in 3.3.1), 
X,2, for an arbitrary level, a?, is given by: 

X2 = X,   (\-FroT(x<a2)) (6.7) 

Where X\ is the threshold crossing rate and FPOT is the CDF for the distribution of 
envelope peaks over the threshold. 

When the extreme value distribution is used for the rare problem (see subsection 
3.3.3), we first compute the probability that a given maximum value is over the threshold: 

_      "\fOT .,   Q. 
PMOT - N (o.s) 

Maxima 

Where NMaxima is the total number of maxima and NMOT is the number of maxima over the 
threshold. Defining PMOT allows easier definition of the confidence interval on X.i in the 
subsequent section. The exceedance rate, Xa, is then given by: 

X2=-j\n{\-p„OT-(\-FMOT(x<a2))) (6.9) 

Where FMOT is the CDF of the distribution of maxima and T is the total duration of all 
sample data. 

6.6.2. Esimate of Confidence Interval for Level Exceedance Rates 

For the rare problem using the simple distribution fit for peaks, the confidence 
interval on the level exceedance rates is a composite value of the confidence intervals for 
the threshold crossing rate and the distribution fit. 

k?=XiBi\-F%T(x«>2J) 
XL

2
B=^f\\-F^)T{x<a2)) 

(6'10) 

For the rare problem using extreme value distribution, we first define the 
confidence interval on PMOT- This is done using equation (6.5), where n is the total 
number of maxima and p is PMOT- The confidence interval on the exceedance rate is then 
given by: 

^=-irln(l-^.(l-F^r(x<a2))) 
1 (6.11) 

^=--ln(l-^r-(l-F^7(x<a2))) 
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6.6.3.   Averaging of Results for All Thresholds 

As discussed in section 6.2, the level exceedance rates are computed using eight 
different thresholds. After computing the level exceedance rates using each threshold, 
the results for all thresholds are averaged together. This is actually done by averaging the 
logarithm of the crossing rate estimates as follows: 

X =10 k "Thresholds 

"Thrmjmltk 

(6.12) 
ilVg 

Where nnresholdi is the number of thresholds and A, is the estimate of the level crossing 
rate for threshold /. 

This log averaging method is used because we are generally interested in the order of 
magnitude of the level exeedance rate estimates. It is possible that one of the estimates is 
several orders of magnitudes larger than the others. In this case the order of magnitude of 
the result of straight averaging is the order of magnitude of the outlier divided by the 
number of estimates (eight in our case). That is, the presence of the outlier can greatly 
skew the order of magnitude of the result if straight averaging is used. 

6.7. Summary 

The algorithm of EPOT (as implemented) consists of the following steps: 

1. Search for zero-crossing peaks. 

2. Evaluate peak-based envelope by reflecting negative peaks and using linear 
interpolation. 

3. Calculation of the mean level of the envelope and searching for the mean- 
crossing peaks of the envelope. 

4. Define 16 thresholds; the upper threshold must have at least 30 peaks of the 
envelope above it; the rest of the thresholds are linearly spaced between the 
upper threshold and the mean of the envelope. 

5. Check Poisson flow applicability for each threshold with both Pearson chi- 
squared test and Kholmogorov-Smirnov test. The thresholds where both tests 
that passed are retained. 

6. Estimate the threshold exceedance (upcrossing) rate and its confidence 
interval for each threshold. 

7. Evaluate empirical cumulative distribution function for peaks of the envelope, 
exceeding each threshold; fit two-parameter Weibull distribution with the 
least squares method. Calculate boundaries of confidence interval for the fit. 

8. Fit the two-parameter Weilbull distribution as an extreme value distribution 
using specified time-window for peaks of the envelope exceeding each 
threshold. Calculate boundaries of confidence interval for the fit. 

9. Calculate exceedance (upcrossing) rate for the level of interest using results 
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for each threshold; calculate boundaries of confidence interval for each value 
of the exceedance rate. 

10. Find the average exceedance rate over all the threshold and boundaries of its 
confidence interval. This is the final result. 
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7. Concluding Comments 
7.1.The Problem 

Given a time history of the response of a nonlinear dynamical system; the probability 
of exceeding a given level during a given time is to be found. It is understood that there 
are no (or statistically insignificant number) of observations that exceed this level. 
Therefore the formulated problem implies statistical extrapolation. 

7.2.The Approach 

By the very essence of any extrapolation method, it is a judgment on data outside of 
observed range, but based on the data within the observed range. Ship motions data are 
statistically dominated by relatively small values laying in the linear range; therefore, an 
attempt to use all the data for statistical extrapolation, in fact, leads to prediction based on 
a linear assumption. To avoid "unintentional lineanerization" of the problem, only large- 
value data that contain information of nonlinearity of the dynamical system should be 
used for extrapolation. The methods that use only the data above a certain threshold are 
known as "Peak-over-Threshold" (POT) methods. 

The POT method can be considered as an implementaion of the principle o\ 
separation, when the problem of the estimate of a probability of rare event is divided in 
two: non-rare and rare. The non-rare problem is meant to be solvable with conventional 
statistical method. In the case of the problem being considered, the non-rare is an 
estimate of exceedance (upcrossing) for a threshold that separates small-valued data in 
the linear range from the data where influence of nonlinearity may be considered as 
"significant". The rare problem is actual statistical extrapolation using only the data 
above the threshold. 

7.3.The Study 

As the probability of exceedance is dependent on time of exposure, the relation 
between the probabity and the time was the first subject of this study. It was concluded 
that Poisson flow should be used to relate probability and the time of exposure. 
Application of the Poisson flow allows use of the exponential distribution for time 
before/between the events of exceedance/upcrossing and requires that events must be 
independent. Pearson-chi-square and Kholmogorov-Smirnov goodness-of-fit test can be 
used to check applicability of Poisson flow. 

The extreme value theory was and is considered as the main tool to address the 
problem of evaluation of the probability of exceedance with statistical extrapolation. In 
order to relate this study with other work in the field, the relation between extreme value 
distribution and time was examined. It was found that the correct interpretation of 
extreme value distribution is inherenrly related with a certain time duration. Extreme 
value distribution describes the behavior of the largest value observed during a given 
time. 
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Further consideration was focused on the properties of peaks. Obviously, if peak of 
the process exceeds the level, the process had exceeded the level. At the same time, the 
peak data are easier to work with as they do not depend on sampling rate; although 
consecutive peaks are not independent, the correlation between them is less in 
comparison with two consecutive values of the time history. 

The rare problem can be formulated in two ways, that involve fitting the two- 
parameter Weibull distribution. However, if the Weibull distribution is fit to all the peaks 
above the threshold, it is used to smooth the histogram. The second way is based on the 
properties of the Weibull formula as one of three extreme value distributions when only 
the largest peak observed during a time window is used for the fit. 

Assumption of independence of consecutive exceedances (upcrossings) may turn out 
to be over-restrictive for certain types of practical applications. One of them is analysis of 
motions in stern quartering seas while the ship has significant forward speed. The 
encounter spectrum becomes quite narrow due to Doppler effect. As a result, motion 
response becomes highly clustered; satisfying the independence clause may become non- 
trivial. Another important practical consideration is when exceedance of the level on 
both sides is an objective. In the latter case the assumption of independence generally is 
not applicable, with the exception of a few very specific cases. If a ship had a large roll 
angle on one side, then it is very likely to have a large excursion on the other side as the 
autocorrelation function stays fairly substantial after just half a period of the motions. 
For such applications, it makes sense to work with the envelope of the process rather than 
with the time history of the process itself. 

It is very efficient to use an envelope with a narrow band process as the envelope 
changes significantly slower than the process itself. For a more general case, piecewise 
linear or peak-based envelope (linear interpolation between the absolute values of local or 
zero-crossing peaks) is found to be more robust. It was shown that statsistical 
extrapolation is based on the envelope peak over the threshold. Also, it was shown that 
the procedure for the envelope peaks does not differ much from the procedure with the 
peaks of the time history of the process. 

A numerical example was used throughout the study. The data set for the numerical 
example consisted from 200 time histories of wave elevations. Each time history was 30 
minutes long and was reconstructed from Bretschneider spectra with a Fourier series. 
Distribution of these wave elevations is normal, so the probability of exceedance during a 
given time is known from upcrossing theory in closed form. Application of the EPOT 
method to this data set shows quite satisfactory performance with average data reduction 
factors from 71.260 to 290,500 (the factor of how much more data would be needed to 
get the same result directly from statistics). 

7.4.The Outcome 

As a result of the work described in this report, the EPOT procedure was developed , 
justified and implemented. The procedure requires input of time histories that can be 
both numerical or experimemnatal origin. The output is an estimate of exceedance 
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(upcrossing) rate that allows calculation of probability of exceedance during a given time. 
As the EPOT procedure is related with statistical estimates, confidence intervals are 
evaluated and carried out through the entire procedure until the final result. The 
procedure was partially validated using wave elevation data. 

7.5.Future Work 
The present report describes statistical aspects of the method. However, both the 

threshold and the level of interest may be subject to additional limitation coming from the 
dynamical aspect of the problem. 

The core approach assumes that there is available data that carries information on 
thenonlinear properties of dynamical system, and this data is located above a certain 
threshold. Setting minimum levels for the threshold cannot be performed based solely on 
statistical data as it requires knowledge of when the system becomes nonlinear. As the 
first expansion, for roll motion of conventional ship, this minimum threshold can be 
taken from the calm water GZ curve that is the stiffness of dynamical system in roll. For 
the most conventional ships, the boundary between linear and nonlinear is around 10-12 
degrees. 

Another limitation is related to the maximum level of interest for which the EPOT 
results can still be considered legitimate. While there are no statistical limitations on the 
level of interest, physical characteristics of the dynamical system do change with the 
level. The instantaneous GZ curve that plays a role of stiffness for roll motions must have 
a maximum. For most ships, there are three equilibria for roll: upright position, angle of 
vanishing stability and capsized position. Maximum of the GZ curve can be considered a 
boundary between the attractor at the upright position and repeller at the angle of 
vanishing stability. Therefore, the character of nonlinearity is quite different before and 
after the maximum angle of the GZ curve. As the roll angles exceeding the maximum of 
the GZ curve are quite rare, the chances are that the rare problem will not have enough 
information on the behavior of the system beyond the angle of the maximum. Therefore 
the upper limitation of EPOT may be expected somewhere around the maximum angle of 
the GZ curve. 

Setting up limits for the lowest threshold and the highest level of interest requires a 
formal procedure that still needs to be developed. This procedure is likely to be based on 
dynamical characteristic of the ship rather than statistical data. 

Thus far, the only validation which has been performed was done on a wave elevation 
dataset. This dataset essentially represents the simplest linear system. Therefore the next 
step in validation of the procedure would be a validation of a response of a nonlinear 
dynamical system. This system should be simple enough, so direct Monte-Carlo 
simulation should be available to generate enough data for "brute-force" statistical 
processing that will provide the "correct answer". The subset of the generated data should 
be used with EPOT to provided an extrapolated result, which is expected to match the 
"correct answer". 
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